Minimum required sample size for a desired margin of error and confidence level when it is a proportion problem: n = (z2÷margin of error2)*p-hat*q-hat
The maximum value of p-hat*q-hat occurs where p-hat = .5 (found by taking the derivative of (p-hat)*(1-p-hat) and setting it equal to 0 to find the maximum. n = ( 2.5762( for 99% confidence interval)÷.0482 )*.5*.5 = 720.028 or 721
Answer:
The answer to your question is:
Step-by-step explanation:
Data
Books read = 18
y = number of months
a ) Expression
R(y) = 18 y
b) Number of books read after 10 months
R(10) = 18(10)
R(10) = 180 books
Y = mx + b where m = slope = 3 and b = y intercept = 1
so equation
y = 3x + 1
answer
<span>y = 3x + 1</span>
Use the quadratic formula to find the values of x:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Where a, b and c are the coefficients of the quadratic equation.
![\begin{gathered} x=\frac{-43\pm\sqrt[]{43^2-4\cdot8\cdot30}}{2\cdot8} \\ x=\frac{-43\pm\sqrt[]{1849-960}}{16} \\ x=\frac{-43\pm\sqrt[]{889}}{16} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-43%5Cpm%5Csqrt%5B%5D%7B43%5E2-4%5Ccdot8%5Ccdot30%7D%7D%7B2%5Ccdot8%7D%20%5C%5C%20x%3D%5Cfrac%7B-43%5Cpm%5Csqrt%5B%5D%7B1849-960%7D%7D%7B16%7D%20%5C%5C%20x%3D%5Cfrac%7B-43%5Cpm%5Csqrt%5B%5D%7B889%7D%7D%7B16%7D%20%5Cend%7Bgathered%7D)
The equation has two solutions for x.
![\begin{gathered} x1=\frac{-43+\sqrt[]{889}}{16} \\ x2=\frac{-43-\sqrt[]{889}}{16} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x1%3D%5Cfrac%7B-43%2B%5Csqrt%5B%5D%7B889%7D%7D%7B16%7D%20%5C%5C%20x2%3D%5Cfrac%7B-43-%5Csqrt%5B%5D%7B889%7D%7D%7B16%7D%20%5Cend%7Bgathered%7D)
As decimal numbers: