Answer:
A
Explanation:
Opposite charges attract therefore the electrons of one atom would be attracted by the nucleus (which contains protons). This heavily relies on a property called electronegativity. Which deals with the level of attraction a nucleus (the protons in the nucleus) have for electrons of other atoms.
Mass of Gold = 267.165 × 0.01552494829
⇒ 4.1477228099
The amount of heat(q) required to raise m grams of a substance-specific C from T1 to T2 is given by
q=m C (T2-T1) ........1
Given : q= 2.1200 J
the initial temperature of gold, T1 = 22.0Celcius
the final temperature of gold, T2 = 1064.4Celcius
specific heat of gold = 0.131
putting values in eq 1:
⇒ 2.1200 = m × 0.131 × (1064.4-22)
⇒ 2.1200 = m × 0.131 × 1042.4
⇒ 2.1200 / 136.5544
⇒ 0.01552494829
Since 1g= 0.01552494829 Pounds
Mass of Gold = 267.165 × 0.01552494829
⇒ 4.1477228099
Learn more about temperature here: brainly.com/question/11464844
#SPJ9
Answer:
The Weight
Explanation:
Even know it has the same volume does not mean it has the same mass and weighs the same with the items inside the box. Most likely, that the Items inside the box are heavier then the first box Max moved.
Missing question:
A. [3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s)] / 2
<span>B. 3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s) </span>
<span>C. 26.3 kJ/1 mol Fe2O3 (s) / 3.40 mol Fe2O3 (s) </span>
<span>D. 26.3 kJ/1 mol Fe2O3 (s) – 3.40 mol Fe2O3 (s).
</span>Answer is: B.
Chemical reaction: F<span>e</span>₂O₃<span>(s) + 3CO(g) → 2Fe(s) + 3CO</span>₂<span>(g);</span>ΔH = <span>+ 26.3 kJ.
When one mole of iron(III) oxide reacts 26,3 kJ of energy is required and for 3,2 moles of iron(III) oxide 3,2 times more energy is required.</span>
Answer:
sodium hydroxide and hydrochloric acid is the reactants