There is a lot of water on earth. If oxygen was very soluble in water, the oceans would absorb and hold the oxygen of the atmosphere and there would be none left for plants and animals.
Hope this help you!!
From mole ratios, the mass ratio of different elements can be predicted. Also the volume can be predicted based on density for liquids and ideal gas law equation for gases. From the mole ratios, the empirical formula can be predicted, as well as the molecular formula given another data which is mass of the sample.
Answer: The mole allows people to calculate the number of middle schoolers entities (usually atoms or molecules. Isabella's number is an absolute number: there are 6.022 × 1023 middle schoolers entities is in 1 mole. This can also be written as 6.022 × 1023 mol-1.
Explanation: I hope that helped !!
Answer:
-973 KJ
Explanation:
The balanced reaction equation is;
N2H4(aq) + 2Cl2(g) + 4OH^-(aq)---------> 4Cl-(aq) + 4H ^+(aq) + 4OH^-(aq) + N2(g)
Reduction potential of hydrazine = -1.16 V
Reduction potential of chlorine = 1.36 V
From;
E°cell= E°cathode - E°anode
E°cell= 1.36 - (-1.16)
E°cell= 2.52 V
∆G°=- nFE°cell
n= number of moles of electrons = 4
F= Faraday's constant = 96500 C
E°cell = 2.52 V
∆G°=- (4 × 96500 × 2.52)
∆G°= -972720 J
∆G°= -972.72 KJ
Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).