1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
2 years ago
5

Help someone please

Mathematics
1 answer:
Natalka [10]2 years ago
7 0
145%
Move the decimal two places right to get a percentage.
And isn't this digits??

Well, have a great day!
You might be interested in
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
A store has 1173 pairs of socks. the socks are sold in packs of 4 pairs. how many packs of socks can the store sell?
Nadusha1986 [10]

Answer:

293 packs is the maximum the store can sell.

Step-by-step explanation:

Determine the number of packs that can be made with 4 pairs of socks.

(1173 pairs)/(4 pairs/pack) = 293.25 packs

We can't sell 0.25 pack (1 pair of socks), so drop that fraction to yield 293 full packs.  Donate the spare pair, so to speak, to the local IRS agent.

5 0
1 year ago
Find two consecutive positive integers such that the sum of their squares is 421 .
maria [59]
We assume the two numbers are x and (x+1)
so x^2+(x+1)^2=421
x^2+(x^2+2x+1)=421
2x^2+2x-420=0
According to the formula of quadratic 
x=14 or-15
cuz we know the two numbers are integers
so x=14
therefore the other number is 15
To make sure that's correct
14^2+15^2=421

Hope that helps you!!


4 0
3 years ago
Roland says the number of cups of iced tea t depends on the number of tea bags b. He says the equation represents the relationsh
nika2105 [10]

Answer:

I think Roland is correct in his statement.

Step-by-step explanation:

Roland says the number of cups of iced tea t depends on the number of tea bags b and he says the equation represents the relationship between the number of tea bags b and the cups of iced tea t = \frac{b}{1.5}.

I think Roland is correct in his statement and this is because here t is a function of b i.e. t = f(b) and hence, the number of cups of iced tea t depends on the number of tea bags b. (Answer)

5 0
3 years ago
2. STOP RIGHT THERE. PLEASE HELP ME WITH THIS QUESTION
Nitella [24]

Answer: 4 * 8 = -32y

4 * 5 = -20

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • I don’t understand what to write
    9·1 answer
  • One restaurant offers two large pizzas for the same price as two medium pizzas and a $6 pitcher of drinks. The medium pizza cost
    10·1 answer
  • Use the diagram attached below. Find the straight distance between the zoo and movie theater.
    14·1 answer
  • If your company grows big enough to hire sales people, how involved will the sales people be in helping the customer come to a d
    6·1 answer
  • Suppose that you work in the inventory planning department of a large electronics store, and a (Q, R) inventory system is used t
    15·1 answer
  • 76 points for free plus brainlest what 0+1=?
    11·2 answers
  • 1. Determine if each of the following triangles is a right-angled triangle. For each right-angled triangle, state the right angl
    7·1 answer
  • 16 ft
    7·1 answer
  • What is the solution to the equation 14x−34=12, given the replacement set {−1, 1, 5} ? x=−1 x = 1 x = 5 I don't know.
    7·2 answers
  • The pressure and volume of an expanding gas are related by the formula PV^b=C, where b and C are constants (this holds in adiaba
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!