Step-by-step explanation:

Answer:
2.
A. (P+h)(x)
2x/x+4 (x-1) + x/x-1 (x+4)
2x^2-1/x^2-4
+
X^2+4/x^2-4
= 3x^2+3/x^2-4
B. (F-g)(x)
X^2-7x+6-x - 6
= x^2 -8x
C. (Fg)(x)
(X^2-7x+6)(x-6)
= x^3-13x^2+48x-36
D. (H/p)(x)
X/x-1 / 2x/x+4
X/x-1 / x+4/2x
= X^2+4x/2x^2-2x
3.
A. (F+g)(3)
X^2+1 + x-4
3^2+1 + 3-4
10 -1
= 9
B. (f-g)(0)
X^2+1 - x-4
0+1 -0-4
1-4
= -3
C. (Fg)(-k)
(X^2+1) (x-4)
(-k^2+1) (-k-4)
K^3+4k^2-k-4
D. (F/g)(k-2)
X^2+1 /x-4
K-2^2+1 / k-2 -2
= K^2-4k+5 / k-4
Step-by-step explanation:
Answer:
80
Step-by-step explanation:
Answer:
Kindly check explanation
Step-by-step explanation:
Given the following :
Population mean (μ) = 2.55
Population standard deviation (σ) = 0.5
Sample size (n) = 30
Sample mean (x) = 2.76
α = 0.05
STEP 1:
Stress score in general executive (s1)
Stress score in exercising executive (s2)
Null : s1 = s2
Alternative : s1 < s2
STEP 2:
Shape of distribution = normal
Population mean (μ) = 2.55
Population standard deviation (σ) = 0.5
Sample size (n) = 30
Sample mean (x) = 2.76
α = 0.05
Decision rule :
α = 0.05 which corresponds to a t score (t0) ;
df = n - 1 = 30 - 1= 30 at 0.05 = 1.699
If :
(Test statistic (t) > t0) ; reject the Null
(right tailed test)
Test statistic (t) :
(x - μ) / (σ/√n)
(2.76 - 2.55) / (0.5/√30)
0.21 / 0.0913
= 2.30
t > t0
2.30 > 1.699
t is more extreme than t0
Hence, reject the null at α = 0.05
You can see that 2 sides are equal and the angle between these 2 sides So its SAS