Answer:
(–5, –7)
Step-by-step explanation:
From the question given above, the following data were obtained:
Slope = 9/5
Coordinate 1 = (–10, –16)
x₁ = –10
y₁ = –16
Coordinate 2 = (x₂, y₂)
Next, we shall determine the change in x and y coordinate. This can be obtained as follow:
Slope = change in y–coordinate / change in x–coordinate
Slope = Δy / Δx
Slope = 9/5
9/5 = Δy / Δx
Thus,
Δy = 9
Δx = 5
Next, we shall determine the second coordinates as follow:
Δy = y₂ – y₁
Δx = x₂ – x₁
For x–coordinate:
x₁ = –10
Δx = 5
Δx = x₂ – x₁
5 = x₂ – (–10)
5 = x₂ + 10
Collect like terms
x₂ = 5 – 10
x₂ = – 5
For y–coordinate:
y₁ = –16
Δy = 9
Δy = y₂ – y₁
9 = y₂ – (–16)
9 = y₂ + 16
Collect like terms
y₂ = 9 – 16
y₂ = – 7
Coordinate 2 = (x₂, y₂)
Coordinate 2 = (–5, –7)
to get the equation of any straight line, we simply need two points off of it, let's use those two points in the picture below.

keeping in mind that for the point-slope form, either point will do, in this case we used the second one, but the first one would have worked just the same.
It would be 24.6 ×24.6
it's 605.16