Answer:
25
Step-by-step explanation:
he got an 80 so if that was his grade by answering 20 questions right then the correct answer would be 25 questions
9514 1404 393
Answer:
(i) x° = 70°, y° = 20°
(ii) ∠BAC ≈ 50.2°
(iii) 120
(iv) 300
Step-by-step explanation:
(i) Angle x° is congruent with the one marked 70°, as they are "alternate interior angles" with respect to the parallel north-south lines and transversal AB.
x = 70
The angle marked y° is the supplement to the one marked 160°.
y = 20
__
(ii) The triangle interior angle at B is x° +y° = 70° +20° = 90°, so triangle ABC is a right triangle. With respect to angle BAC, side BA is adjacent, and side BC is opposite. Then ...
tan(∠BAC) = BC/BA = 120/100 = 1.2
∠BAC = arctan(1.2) ≈ 50.2°
__
(iii) The bearing of C from A is the sum of the bearing of B from A and angle BAC.
bearing of C = 70° +50.2° = 120.2°
The three-digit bearing of C from A is 120.
__
(iv) The bearing of A from C is 180 added to the bearing of C from A:
120 +180 = 300
The three-digit bearing of A from C is 300.
Answer:
B
Step-by-step explanation:
Since the triangle is right use the tangent ratio to find x
tan22° =
= 
Multiply both sides by x
x × tan22° = 203 ( divide both sides by tan22° )
x =
≈ 502.5 m → B
Answer:
hence the answer for given problem is -2, but andrew get -21.6 which is wrong
Step-by-step explanation:
The table is attached in the figure.
g(x) = f(4x) ⇒⇒⇒ differentiating both sides with respect to x
∴ g'(x) =
⇒⇒⇒⇒⇒⇒ chain role
To find g '(0.1)
Substitute with x = 0.1
from table:
f'(0.1) = 1 ⇒ from the table
∴ g'(0.1) = 4 * [ f'(0.1) ] = 4 * 1 = 4