Answer:
The decision rule is
Fail to reject the null hypothesis
The conclusion is
There no sufficient evidence to show that the proportion of salmonella in the region’s water differs from the proportion of salmonella in the region’s wildlife
Step-by-step explanation:
From the question we are told that
The first sample size is ![n_1 = 252](https://tex.z-dn.net/?f=n_1%20%20%20%3D%20%20252)
The number that tested positive is ![k_1 = 18](https://tex.z-dn.net/?f=k_1%20%20%3D%20%2018)
The second sample size is ![n_2 = 476](https://tex.z-dn.net/?f=n_2%20%20%20%3D%20%20476)
The number that tested positive is ![k_2 = 20](https://tex.z-dn.net/?f=k_2%20%3D%20%2020)
The level of significance is ![\alpha = 0.01](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%200.01)
Generally the first sample proportion is mathematically represented as
=>
=> ![\^ p _1 = 0.071](https://tex.z-dn.net/?f=%5C%5E%20p%20_1%20%3D%200.071)
Generally the second sample proportion is mathematically represented as
=>
=> ![\^ p _2 = 0.042](https://tex.z-dn.net/?f=%5C%5E%20p%20_2%20%3D%200.042)
The null hypothesis is ![H_o : p_1 - p_2 = 0](https://tex.z-dn.net/?f=H_o%20%20%3A%20%20p_1%20-%20p_2%20%3D%200)
The alternative hypothesis is ![H_a : p_1 - p_2 \ne 0](https://tex.z-dn.net/?f=H_a%20%3A%20%20p_1%20-%20p_2%20%5Cne%200)
Generally the test statistics is mathematically represented
![z = \frac{ \^ p_1 - \^ p_2 - ( p_ 1 - p_2 )}{ \sqrt{\frac{\^ p_1 (1-\^ p_1)}{ n_1 } + \frac{\^ p_2 (1-\^ p_2)}{ n_2 } } }](https://tex.z-dn.net/?f=z%20%3D%20%20%5Cfrac%7B%20%5C%5E%20p_1%20-%20%5C%5E%20p_2%20%20-%20%20%28%20p_%201%20-%20p_2%20%29%7D%7B%20%5Csqrt%7B%5Cfrac%7B%5C%5E%20p_1%20%281-%5C%5E%20p_1%29%7D%7B%20n_1%20%20%7D%20%2B%20%5Cfrac%7B%5C%5E%20p_2%20%281-%5C%5E%20p_2%29%7D%7B%20n_2%20%20%7D%20%20%7D%20%7D)
=> ![z = \frac{ 0.071 - 0.042 - 0 }{ \sqrt{\frac{0.071 (1-0.071)}{ 252 } + \frac{0.042 (1-\^ 0.042)}{ 476 } } }](https://tex.z-dn.net/?f=z%20%3D%20%20%5Cfrac%7B%200.071%20-%200.042%20%20-%200%20%7D%7B%20%5Csqrt%7B%5Cfrac%7B0.071%20%20%281-0.071%29%7D%7B%20%20252%20%20%7D%20%2B%20%5Cfrac%7B0.042%20%281-%5C%5E%200.042%29%7D%7B%20476%20%20%7D%20%20%7D%20%7D)
=> ![z = 1.56](https://tex.z-dn.net/?f=z%20%3D%20%201.56)
From the z table the area under the normal curve to the right corresponding to 1.56 is
![P(Z > 1.56 ) =0.05938](https://tex.z-dn.net/?f=P%28Z%20%3E%20%201.56%20%29%20%3D0.05938)
Generally the p-value is mathematically represented as
![p-value = 2 * P(Z > 1.56 )](https://tex.z-dn.net/?f=p-value%20%3D%20%202%20%2A%20P%28Z%20%3E%20%201.56%20%29)
=> ![p-value = 2 * 0.05938](https://tex.z-dn.net/?f=p-value%20%3D%202%20%2A%20%200.05938)
=> ![p-value = 0.1188](https://tex.z-dn.net/?f=p-value%20%3D%200.1188)
From the value obtained we see that
hence
The decision rule is
Fail to reject the null hypothesis
The conclusion is
There no sufficient evidence to show that the proportion of salmonella in the region’s water differs from the proportion of salmonella in the region’s wildlife