1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
3 years ago
5

HELP HELP!!!! YOU WILL GET BRAINLIEST!! PLEASE!!!

Mathematics
1 answer:
LiRa [457]3 years ago
5 0
Um idk sorry lol that’s way to hard for me
You might be interested in
(y* - 5)(yx + 5)<br> please help
Nina [5.8K]

Answer:

Simplified the expression.

y2x+5y−5yx−25  

I think this is what were were asking, if not please explain better.

Hope this helps :D

plz like & brainly

7 0
3 years ago
The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and
natali 33 [55]

Answer:

a)\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is \alpha=0.05

The statistic to check the hypothesis is given by:

\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}

The table given represent the observed values, we just need to calculate the expected values with the following formula E_i = \frac{total col * total row}{grand total}

And the calculations are given by:

E_{1} =\frac{70*100}{200}=35

E_{2} =\frac{80*100}{200}=40

E_{3} =\frac{50*100}{200}=25

E_{4} =\frac{70*70}{200}=24.5

E_{5} =\frac{80*70}{200}=28

E_{6} =\frac{50*70}{200}=17.5

E_{7} =\frac{70*30}{200}=10.5

E_{8} =\frac{80*30}{200}=12

E_{9} =\frac{50*30}{200}=7.5

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

Now we can calculate the degrees of freedom for the statistic given by:

df=(rows-1)(cols-1)=(3-1)(3-1)=4

And we can calculate the p value given by:

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

7 0
3 years ago
Divide. Write your answer in simplest form. 6/7 ÷ 5/21​
Serjik [45]
The answer is 8/5.
To divide fractions, flip the second fraction and multiply.
For example,
= 6/7 • 21/5
= 126/35
Simplify by dividing both sides by 7 to get your answer.
= 8/5
5 0
3 years ago
Can someone please help me out with this
SashulF [63]

Answer:

4 = 15

Step-by-step explanation:

Make them equal to each other first

2x+15=x+30

Put like terms together

x=15

Hope this helped

:)

7 0
2 years ago
I need a teacher to help or a student who good at Graphing
rodikova [14]

Answer:

A

Step-by-step explanation:

The red function is a transformation. Transformation have the following rules:

  • f(x-a) is a units shifted to the right
  • f(x+a) is a units shifted to the left
  • f(x)+a is a units shifted up
  • f(x) -a is a units shifted down

It shifts the red graph 1 unit to the right. This is f(x-1).

3 0
2 years ago
Other questions:
  • Factor completely 7x3y +14x2y3 − 7x2y2.
    5·2 answers
  • What is the correct answer help please?
    11·2 answers
  • Complete the ordered pairs so they are solutions of the equation:
    6·1 answer
  • Lee Middle School orders 15 textbooks for every 12 students. The table shows how many textbooks the school orders for certain nu
    5·1 answer
  • Can a five year old do Algebra? yes but how and why?
    8·2 answers
  • Before tax, the price of fuels $3.40 per liter.
    11·1 answer
  • 5s + 2z = 1.32 <br> 3s + 1z = 0.75 <br> what would the answer be?
    11·1 answer
  • Will mark brainless
    10·1 answer
  • What Is an exponent? ​
    7·1 answer
  • Jasmine drew this display to represent the amount of
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!