Answer:
267 and 322
Step-by-step explanation:
I am pretty sure this is right
Step-by-step explanation:
We want to find two things-- the speed of the boat in still water and the speed of the current. Each of these things will be represented by a different variable:
B = speed of the boat in still water
C = speed of the current
Since we have two variables, we will need to find a system of two equations to solve.
How do we find the two equations we need?
Rate problems are based on the relationship Distance = (Rate)(Time).
Fill in the chart with your data (chart attached)
The resulting speed of the boat (traveling upstream) is B-C miles per hour. On the other hand, if the boat is traveling downstream, the current will be pushing the boat faster, and the boat's speed will increase by C miles per hour. The resulting speed of the boat (traveling downstream) is B+C miles per hour. Put this info in the second column in the chart. Now plug it into a formula! <u>Distance=(Rate)(Time) </u>Now solve using the systems of equations!
F(x) is a quadratic. The y intercept, therefore, is equal to the c value.
The y intercept here is -4.
For g(x), you can tell that the y intercept is 0 because that's the value of y when the x value is 0.
For h(x), the chart specifies that when x=0, y=-2, so the y intercept is -2.
Of these three values, 0 is the largest.
Final answer: g(x)
The answer is 0.00347222222