The midpoint of the segment with the following endpoints, (4, 2) and
(7, 6) is (5.5, 4).
How to determine the midpoint of a given segment?
The center point of a straight line can be located using the midpoint formula. We can use this midpoint formula to determine the coordinates of the supplied line's midpoint in order to discover its location on a graph. Assuming that the line's endpoints are (x₁, y₁) and (x₂, y₂), the midpoint (a, b) is determined using the following formula:
(a , b) ≡ (((x₁ + x₂)/2), ((y₁ + y₂)/2))
Let the line segment be AB having endpoints as A(4, 2) and B(7, 6);
also let the co-ordinates of midpoint be C = (a, b)
Using the given formula in the available literature,
(a, b) = ((4 + 7)/2, (2 + 6)/2)
Equating parts of the previous equation, we get,
a = (4 + 7)/2 = 11/2 = 5.5
b = (2 + 6)/2 = 4
Thus, the midpoint of the segment is (5.5, 4).
To learn more about this, tap on the link below:
brainly.com/question/5566419
#SPJ9
That’s cool
Not sure how to answer this but I would like to help you just need to be more specific with your question
6000=2560(1+0.052)^t
Solve for t
t=log(6,000÷2,560)÷log(1+0.052)
t=16.8 years
Answer:
x = ±2, 3 are the critical points of the given inequality.
Step-by-step explanation:
The given inequality is 
To find the critical points we will equate the numerator and denominator of the inequality to zero.
For numerator,

(x - 2)(x + 2) = 0
x = ±2
For denominator,
x² - 5x + 6 = 0
x² - 3x -2x + 6 = 0
x(x - 3) -2(x - 3) = 0
(x - 3)(x - 2) = 0
x = 2, 3
Therefore, critical points of the inequality are x = ±2, 3 where the sign of the inequality will change.