1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
7

Find the slope of the line through the given points. (-9, -7) and (-11, -13)

Mathematics
1 answer:
gulaghasi [49]3 years ago
8 0
The slope is gonna be 3

the equation will be y=3x+20
You might be interested in
Hi. Please I need help with these questions.
ElenaW [278]

Answer:

Q 12 roots of the equation

2x^{2} -6+1=0 \\= (x-\frac{\sqrt{10} }{2})(x+\frac{\sqrt{10} }{2})\\

∝ = \frac{\sqrt{10} }{2}

β = -\frac{\sqrt{10} }{2}

no matter if u oppose the root

(i) 2(\frac{\sqrt{10} }{2})(-\frac{\sqrt{10} }{2} )^{2}+2(\frac{\sqrt{10} }{2} )^{2}(-\frac{\sqrt{10} }{2})+2(

(ii)((\frac{\sqrt{10} }{2})^{2} - 3 (\frac{\sqrt{10} }{2})(-\frac{\sqrt{10} }{2}) + ((-\frac{\sqrt{10} }{2})^{2}) = \frac{25}{2}

Q 13  roots of equation

4x^{2} -3x-4=0\\\alpha = -0.693\\\beta = 1.443

the roots of the second equation are

x1 = 1/3(-0.693) = -0.231

x2 = 1/3(1.443) = 0.481

the equation is

(x+0.231)(x-0.481)=0

x^{2}-\frac{1}{4} x-\frac{1}{9}

4 0
3 years ago
Marisol graphed a scatter plot of the number of hours she rode her
maks197457 [2]

Answer:

lolololololololoolololo

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Use the Fundamental Theorem of Calculus to find the "area under curve" of
lozanna [386]

Answer:

\displaystyle A = 300

General Formulas and Concepts:

<u>Calculus</u>

Integrals

  • Definite Integrals
  • Area under the curve
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:                                                                                       \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = 6x + 19

Interval [12, 15]

<u>Step 2: Find Area</u>

  1. Substitute in variables [Area of a Region Formula]:                                       \displaystyle A = \int\limits^{15}_{12} {(6x + 19)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:                   \displaystyle A = \int\limits^{15}_{12} {6x} \, dx + \int\limits^{15}_{12} {19} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle A = 6\int\limits^{15}_{12} {x} \, dx + 19\int\limits^{15}_{12} {} \, dx
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle A = 6(\frac{x^2}{2}) \bigg| \limits^{15}_{12} + 19(x) \bigg| \limits^{15}_{12}
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle A = 6(\frac{81}{2}) + 19(3)
  6. Simplify:                                                                                                             \displaystyle A = 300

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

7 0
3 years ago
Ms. Suzuki is buying soda for the pizza party her class earned. She estimates that each of her
olya-2409 [2.1K]

Answer:

6

Step-by-step explanation:

250 mL is 0.25 L or 1/4 L.

1 L is enough for 4 students.

A 2-L bottles is enough for 8 students.

Since 24 students is 3 times 8 students, you need 3 times a 2-liter bottle.

Answer: 3

8 0
2 years ago
Which are the solutions of x2 = –13x – 4? 0, 13 0, –13 StartFraction 13 minus StartRoot 153 EndRoot Over 2 EndFraction comma Sta
klasskru [66]

Solution of the given expression  x^2 = -13x-4 is x=\frac{-13+\sqrt{153}}{2}\,\,and\,\,x=\frac{-13-\sqrt{153}}{2}

Correct options are: Start Fraction negative 13 minus Start Root 153 End Root Over 2 End Fraction comma Start Fraction negative 13 + Start Root 153 End Root

Step-by-step explanation:

We need to find solutions of x^2 = -13x-4

We need to solve the quadratic equation and find values of x.

Solving:

x^2 = -13x-4

Rearranging the terms:

x^2+13x+4=0

Solving the quadratic equation using quadratic formula:

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

where a = 1, b= 13 and c=4

putting values:

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\x=\frac{-(13)\pm\sqrt{(13)^2-4(1)(4)}}{2(1)}\\x=\frac{-13\pm\sqrt{169-16}}{2}\\x=\frac{-13\pm\sqrt{153}}{2}\\x=\frac{-13+\sqrt{153}}{2}\,\,and\,\,x=\frac{-13-\sqrt{153}}{2}

So, Solution of the given expression  x^2 = -13x-4 is x=\frac{-13+\sqrt{153}}{2}\,\,and\,\,x=\frac{-13-\sqrt{153}}{2}

Correct options are: Start Fraction negative 13 minus Start Root 153 End Root Over 2 End Fraction comma Start Fraction negative 13 + Start Root 153 End Root

Keywords: Solving Quadratic Equations

Learn more about Solving Quadratic Equations at:

  • brainly.com/question/4460262
  • brainly.com/question/7361044
  • brainly.com/question/1414350

#learnwithBrainly

5 0
3 years ago
Read 2 more answers
Other questions:
  • Which expression is equivalent to 6(3+0.05)?
    6·2 answers
  • 21 is 75% of what amount
    13·2 answers
  • Remember that to multiply means: add any given number or quantity to itself a certain number of times. Look at the expression 3
    15·1 answer
  • Gavin and Jack are practicing shots against their goalie. On their last 15 attempts, Gavin made 6 and Jack made 7. Based on this
    13·1 answer
  • 24 ten thousands equals
    9·1 answer
  • What is the value of tan x ?
    8·1 answer
  • A tutor charges $5 for each class he takes per day that lasts for an hour. for each additional hour he tutors he charges $3. mat
    11·1 answer
  • What is the Composite Surface Area?​ Need help asap is due today.
    9·1 answer
  • I NEED HELP SOLVING THIS MATH PROBLEM.
    6·1 answer
  • Can you help me solve this equation?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!