Answer:
94
Step-by-step explanation:
Margin of error = E = $ 120
Confidence Level = 95%
The z-score for 95% confidence level from the z-table = z = 1.96
Population standard deviation = σ = $593
Sample size = n = ?
The formula to calculate the margin of error is:
![E=\frac{z \sigma}{\sqrt{n} }](https://tex.z-dn.net/?f=E%3D%5Cfrac%7Bz%20%5Csigma%7D%7B%5Csqrt%7Bn%7D%20%7D)
Re-arranging the equation, we get:
![\sqrt{n}=\frac{z \sigma}{E}\\\\ n = (\frac{z \sigma}{E})^{2}](https://tex.z-dn.net/?f=%5Csqrt%7Bn%7D%3D%5Cfrac%7Bz%20%5Csigma%7D%7BE%7D%5C%5C%5C%5C%20%20n%20%3D%20%28%5Cfrac%7Bz%20%5Csigma%7D%7BE%7D%29%5E%7B2%7D)
Using the given values in above equation, we get:
![n=(\frac{1.96 \times 593}{120} )^{2}\\\\ n = 93.8](https://tex.z-dn.net/?f=n%3D%28%5Cfrac%7B1.96%20%5Ctimes%20593%7D%7B120%7D%20%29%5E%7B2%7D%5C%5C%5C%5C%20n%20%3D%2093.8)
Rounding of to next higher integer, we get n = 94
Thus, we need a sample size of 94 to estimate an unknown population mean μ