Given
The figure is rotated 360° clockwise with the origin as the center of rotation. Which graph represents the rotated figure?
Answer
After the rotation of 360 degrees, a figure comes back to original position
Option A is correct
Answer:

Step-by-step explanation:
1. rewrite the equation in standard form: 
2. find (h,k), the vertex. the vertex is 
3. find the 'focal length' of the parabola - the focal length is the distance between the vertex and the focus. from the vertex we can see that the focal length, p, = 3/2
4. Parabola is symmetric around the y-axis and so the asymptote is a line parallel to the x-axis, a distance p from the
y coordinate which is at
. Set up the equation:

5. substitute and solve:


hope this helps, ask me questions if you still don't understand.
Answer:
<h2>3.6°</h2>
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Find the angle between the given vectors to the nearest tenth of a degree.
u = <8, 7>, v = <9, 7>
we will be using the formula below to calculate the angle between the two vectors;

is the angle between the two vectors.
u = 8i + 7j and v = 9i+7j
u*v = (8i + 7j )*(9i + 7j )
u*v = 8(9) + 7(7)
u*v = 72+49
u*v = 121
|u| = √8²+7²
|u| = √64+49
|u| = √113
|v| = √9²+7²
|v| = √81+49
|v| = √130
Substituting the values into the formula;
121= √113*√130 cos θ
cos θ = 121/121.20
cos θ = 0.998
θ = cos⁻¹0.998
θ = 3.6° (to nearest tenth)
Hence, the angle between the given vectors is 3.6°
In rectangular form, we have the coordinates 