There is synthesis
decomposition
double displacement
single displacement
combustion
metathesis
so i guess you could say 6
Answer:
C and D
Explanation:
A uniform probability model is a probabilistic model characterized by a uniform probability density function, or uniform distribution.
In common language, a uniform probability distribution means that all possible outcomes in the probability space have the same probability of occurrence.
So:
- A fair toss of coin every possible outcome (H,T) has probability 0.5. It is modeled by by a uniform discrete distribution.
- Randomly selected answer to an MCQ with four options would have probability of success 0.25 for every MCQ. It is modeled by by a uniform discrete distribution.
- Spinning a spinner with sections that are different sizes, each section would have different probabilities proportional to the coverage area on the. It is modeled by a non-uniform discrete distribution
- Pulling a red marble out of a bag with 6 red marbles, 3 green marbles, and 1 yellow marble. Each successive time a red marble is drawn the probability decreases. Hence, non uniform distribution.
- Spinning a spinner on which all sections are the same size. Each section would have similar probabilities proportional to the coverage area on the. It is modeled by a uniform discrete distribution .
Temperature is the measurement of the average energy of the particles in a solid, liquid or gas and thermal energy is the total energy in a set amount of solid, liquid or gas. Therefore, the temperature and thermal energy is not the same thing. They are both about the particle theory, which is a theory that all particles of solid, liquid or gas are always in motion. But the difference between the two is that temperature is the "measurement" of the particles in a solid, liquid or gas and the thermal energy is the total energy in a set amount of solid, liquid or gas.
Given mass= 1kg
Weight on earth = mg(gravity of earth) = 9.8N
weight on moon = mg(gravity of moon)= 1.62N
weight on outer space mg(gravity outer space = 0) = 0N
The second law of thermodynamics establishes restrictions on the flow of thermal energy between two bodies. This law states that the energy does not flow spontaneously from a low temperature object T1, to another object that is at a high temperature T2.
For example. Suppose you place your cell phone on the table. Your phone is at a temperature of 40 ° C and the table is at 19 ° C. Then, it is impossible for the table to spontaneously transfer its thermal energy to the telephone, and so that the table gets colder and the telephone warmer.
Finally we can say that the correct option is B: From the hotter object to the cooler object