Answer:
aₓ = 0
, ay = -6.8125 m / s²
Explanation:
This is an exercise that we can solve with kinematics equations.
Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.
x axis
vₓ = v₀ₓ = 1.10 m / s
aₓ = 0
y axis
initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration
= v_{oy} -ay t
ay = (v_{oy} -v_{y}) / t
ay = (0 -10.9) / 1.6
ay = -6.8125 m / s²
the sign indicates that the acceleration goes in the negative direction of the y axis
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.
I, thank you for posting your question here at Brainly.
Here are the answers to your questions:
1. Monkeys live in tropical rainforest ecosystems.
2. Animals should be left alone in nature to take part in the balance of the ecosystem, and not upset it. A sudden increase of monkey population, probably due to destruction of rainforests which lead to lesser area of living for them.
3. Monkeys take a huge part in seed dispersal among flesh fruit plants. Without them, it will greatly affect the conservation of the forests.
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart, 
Initial speed of the cart, 
Mass of the larger cart, 
Initial speed of the larger cart, 
After the collision,
Final speed of the smaller cart,
(as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let
is the speed of the large cart after collision. It can be calculated using conservation of momentum as :





So, the speed of the large cart after collision is 0.301 m/s.