Answer:
a = 2.72 ms⁻²
32.83 s
Explanation:
By using the kinematic equations you get,
v² = u² +2as and v = u + at where all terms in usual meaning
Using 1st equation,
89.3² = 0² + 2a×1465 ⇒ a = 2.72 ms⁻²
By 2nd equation,
89.3 = 0 + 2.72×t ⇒ t = 32.83 s
The magnitude of static friction force is f_s = 842.8 N
Explanation:
Write down the values given in the question
The wheel of a car has radius r = 0.350 m
The car applies the torque is τ = 295 N m
It is said that the wheels does not slip against the road surface,
Here we apply a force of static friction,
It can be calculated as
Frictional force f_s = τ / r
= 295 Nm / 0.350 m
f_s = 842.8 N
Answer:
(a) -8064 N
(b) 8064 N
Explanation:
(a)
From Newton’s law of motion, Force, F=ma where m is mass and a is acceleration.
Since acceleration is the rate of change of velocity per unit time, then where v is velocity and the subscripts f and I denote final and initial
For the first ball, the mass is 0.28 Kg, final velocity is zero since it finally comes to rest, t is 0.00025 s and initial velocity is given as 7.2 s. Substituting these values we obtain

(b)
For the second ball, the mass is also 0.28 Kg but its initial velocity is taken as zero, the final velocity of the second ball will be equal to the initial velocity of the second ball, that is 7.2 m/s and the time is also same, 0.00025 s. By substitution

Here, we prove that action and reaction are equal and opposite
<u>Answer:</u>
<h3>As electric current is carried in a cable, around it, a magnetic field is created. The lines of the magnetic fields form concentric circles around the wire. The direction of the magnetic field hinges on the direction of the current. It can be calculated by pointing the thumb of your right hand in the direction of the moment, using the "right hand law." The position of your curled fingers is in the magnetic field lines. The magnetic field magnitude depends on the sum of current, and the distance from the wire carrying the charge.</h3>
<u></u>
<u>Explanation:</u>
Determine the direction of vector B magnitude B: 

Resultant magnitude strength:
its direction is pointing to the left.
Note: Refer the image attached below