Answer:
F = 0.00156[N]
Explanation:
We can solve this problem by using Newton's proposed universal gravitation law.

Where:
F = gravitational force between the moon and Ellen; units [Newtos] or [N]
G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1= Ellen's mass [kg]
m2= Moon's mass [kg]
r = distance from the moon to the earth [meters] or [m].
Data:
G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1 = 47 [kg]
m2 = 7.35 * 10^22 [kg]
r = 3.84 * 10^8 [m]
![F=6.67*10^{-11} * \frac{47*7.35*10^{22} }{(3.84*10^8)^{2} }\\ F= 0.00156 [N]](https://tex.z-dn.net/?f=F%3D6.67%2A10%5E%7B-11%7D%20%2A%20%5Cfrac%7B47%2A7.35%2A10%5E%7B22%7D%20%7D%7B%283.84%2A10%5E8%29%5E%7B2%7D%20%7D%5C%5C%20F%3D%200.00156%20%5BN%5D)
This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.
C because it’s not a or B so 50/50 c or d and d is def not the answer so c
That would be like dropping your cell phone on to the ground by accident. The object (cell phone)'s gravitational potential energy would be converted to kinetic energy or energy in motion more precisely. This is just a hypothetical example though.
Answer:
The emission spectrum is always the same and can be used to identify the element and part of the Bohr model proposed that electrons in the hydrogen are located in particular orbits around the nucleos are True.
Explanation:
The Niels Bohr and quantic mecanic theorys are both based on the study of atomics spectrums. The atomic spectrum is a characteristic pattern of a light wavelenght emited wich is unique to each element.
<u>For example</u>, if we put some low pressure hydrogen in a glass tube and in the tp of the glass we apply a voltage big enough to produce a electric current in the hydrogen gas, the tube its going to emit light wich have a color dependig of the gas element in the interior. If we observe this light with a spectrometer we are going to see shining lines and each one of this lines have a wavelenght and diferent colors. This lines are called emission spectrum and the wavelength of that spectrum are unique to eache element.
<u>Summering up, </u>we can identify elements using the emission spectrum because any element produces the same spectrum than other element.
According to Niels Bhor theory the electron only can be in especific discret ratios to the nucleus. Where this electron moves himself in circukar orbits under the influence of the Coulomb attraction force.