Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
8437.5
Explanation:
By applying the formula of kinetic energy:
Kinetic energy=1/2 mv^2
Answer:
Explanation:
Ionization Energy Trends
Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase. Conceptually, ionization energy is the opposite of electronegativity. ... As a result, it is easier for valence shell electrons to ionize, and thus the ionization energy decreases down a group
I think the correct answer from the choices listed above would be the last option. It is the chemicals in the core of the star that cannot be determined from the spectrum of a star. Spectrum shows the different classification of the stars depending on their spectral characteristics. It usually involves the light, the wavelength and the distance.
Answer:
<h2>1 st statement is correct </h2>
Explanation:
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another. This means that a system always has the same amount of energy, unless it's added from the outside
<h2>hope you understand and got your answer by my explanation </h2><h2>thanks </h2>
<h2>please give brainliest plz follow </h2>