Answer:
The position of the particle is -2.34 m.
Explanation:
Hi there!
The equation of position of a particle moving in a straight line with constant acceleration is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the particle at a time t:
x0 = initial position.
v0 = initial velocity.
t = time
a = acceleration
We have the following information:
x0 = 0.270 m
v0 = 0.140 m/s
a = -0.320 m/s²
t = 4.50 s (In the question, where it says "4.50 m/s^2" it should say "4.50 s". I have looked on the web and have confirmed it).
Then, we have all the needed data to calculate the position of the particle:
x = x0 + v0 · t + 1/2 · a · t²
x = 0.270 m + 0.140 m/s · 4.50 s - 1/2 · 0.320 m/s² · (4.50 s)²
x = -2.34 m
The position of the particle is -2.34 m.
Answer:
μ = 0.18
Explanation:
Let's use Newton's second Law, the coordinate system is horizontal and vertical
Before starting to move the box
Y axis
N-W = 0
N = W = mg
X axis
F -fr = 0
F = fr
The friction force has the formula
fr = μ N
fr = μ m g
At the limit point just before starting the movement
F = μ m g
μ = F / m g
calculate
μ = 34.8 / (19.8 9.8)
μ = 0.18
Answer:
unknown
Explanation:
Psi communication: The term "Psi communication" was initially originated in an article named 'Mass Communication and Para-Social Interaction' during 1956 by Donald Horton, and is also denoted as "parasocial interaction". It is described as a phenomenon that involves "one-sided interaction" between people, encompassing the viewer knowing a specific celebrity well whereas the viewer himself or herself is being completely unknown for the celebrity in return.
In the question above, the given statement represents that the Psi communication is responsible for transforming via an unknown process as one of its members are considered as unknown of the transfer, so the correct answer would be "unknown process".
Those two units can be compared to a 'mile per hour' and a 'mile per hour - hour'.
One is a rate. The other is a quantity, after maintaining a rate for some time.
-- 'Joule' is a unit of energy. It's the amount of work (energy) you do
when you push with a force of 1 newton though a distance of 1 meter.
Lifting 10 pound of beans 3 feet off the floor takes about 40.7 joules of energy.
-- 'Watt' is a <u><em>rate</em></u> of using energy . . . 1 joule per second.
If you lift 10 pounds 3 feet off the floor in 1 second, your <em>power</em> is 40.7 watts.
-- 'Watt-second' is the amount of energy used in one second,
at the rate of 1 joule per second . . . 1 joule.
-- 'Watt-hour' is the amount of energy used in one hour,
at the rate of 1 joule per second . . . 3,600 joules.
-- 'Kilowatt' is a bigger <em>rate</em> of using energy . . . 1,000 joules per second.
-- 'Kilowatt - second' is the amount of energy used in one second,
at the rate of 1,000 joules per second . . . 1,000 joules .
-- 'Kilowatt - hour' is the amount of energy used in one hour,
at the rate of 1,000 joules per second . . . 3,600,000 joules .
Depending on where you live, 3,600,000 joules of energy bought
from the electric company costs something between 5¢ and 25¢.
Answer:
The speed traveled by the car is 40 meter per second.
Explanation:
The formula for the relation between the power and the force is as follows:
P = Fv
Where F is the force and v is the speed.
As given
To travel at constant speed, a car engine provides 24KW of useful power. The driving force on the car is 600N.
F = 600 N
Convert power from KW to W.
1 KW = 1000 W
24 KW = 24 × 1000 W
= 24000 W
Thus
P = 24000 W
Put these values in the formula.
24000 = 600 × v
24000 = 600v

v = 40 meter per second .
Therefore the speed of the car is 40 meter per second .