I am pretty sure that the only statement which is true for particles of the medium of an earthquake P-wave is being shown in the option : b)vibrate parallel to the wave, forming compressions and rarefactions. As you know, it can be formed in two ways : from alternating compressions and rarefactions or primary wave. I bet you will agree with me.
Answer:
(a) I_A=1/12ML²
(b) I_B=1/3ML²
Explanation:
We know that the moment of inertia of a rod of mass M and lenght L about its center is 1/12ML².
(a) If the rod is bent exactly at its center, the distance from every point of the rod to the axis doesn't change. Since the moment of inertia depends on the distance of every mass to this axis, the moment of inertia remains the same. In other words, I_A=1/12ML².
(b) The two ends and the point where the two segments meet form an isorrectangle triangle. So the distance between the ends d can be calculated using the Pythagorean Theorem:

Next, the point where the two segments meet, the midpoint of the line connecting the two ends of the rod, and an end of the rod form another rectangle triangle, so we can calculate the distance between the two axis x using Pythagorean Theorem again:

Finally, using the Parallel Axis Theorem, we calculate I_B:

Answer:
to move an object from its place or position
Explanation:
if you move an object from where it first was
Answer:
The new kinetic energy would be 16 times greater than before.
Explanation:
Kinetic energy is found using this formula:
- KE = 1/2mv²
- where KE = kinetic energy (J), m = mass (kg), and v = velocity (m/s)
We can see that kinetic energy is directly proportional to the square of the velocity, meaning that if the speed was increased by 4 times, then the kinetic energy would get increased by a factor of 16.
The velocity just before the ball hits the ground can be found by the equation:
Let's substitute h = 10 m and h = 40 m into this formula.
We can see that the velocity increases by a factor of 4 (10 m → 40 m).
Therefore, this means that the kinetic energy would also be increased by a factor of (4)² = 16. Thus, the answer is D) The new kinetic energy would be 16 times greater than before.
Hello There!
The resistance of a conductor depends on all of the following except mass.
Mass wouldn't affect the resistance in any way.
Hope This Helps You!
Good Luck :)
- Hannah ❤