1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
5

What is the elimination method for this problem 4x-3y=22 2x-y=10

Mathematics
2 answers:
Katyanochek1 [597]3 years ago
6 0
4x-3y=22
2x-y=10
4y-2y-20
-y=2
y=-2
i think that is the answer...

Firdavs [7]3 years ago
5 0
4x - 3y = 22 ⇒  4x - 3y = 22 ⇒ 4x - 3y = 22
2x  -  y = 10 ⇒2(2x - y) = 10 ⇒ <u>4x - 2y = 10</u>
                                                          5y = 32
                                                          <u>5y</u> = <u>32
</u>                                                           5      5<u>
</u>                                                            y = 6.4
                                              4x - 3(6.4) = 22
                                                4x - 19.2 = 22
                                                <u>     + 19.2 + 19.2
</u>                                                            4x = 41.2
                                                           <u>4x</u> = <u>19.2</u>
                                                            4        4
                                                             x = 4.8
                                                        (x, y) = (4.8, 6.4)
<u />
You might be interested in
What is the value of f(−3)?
Daniel [21]
Is that the whole question ?
7 0
3 years ago
y′′ −y = 0, x0 = 0 Seek power series solutions of the given differential equation about the given point x 0; find the recurrence
sukhopar [10]

Let

\displaystyle y(x) = \sum_{n=0}^\infty a_nx^n = a_0 + a_1x + a_2x^2 + \cdots

Differentiating twice gives

\displaystyle y'(x) = \sum_{n=1}^\infty na_nx^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n = a_1 + 2a_2x + 3a_3x^2 + \cdots

\displaystyle y''(x) = \sum_{n=2}^\infty n (n-1) a_nx^{n-2} = \sum_{n=0}^\infty (n+2) (n+1) a_{n+2} x^n

When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.

Substitute these into the given differential equation:

\displaystyle \sum_{n=0}^\infty (n+2)(n+1) a_{n+2} x^n - \sum_{n=0}^\infty a_nx^n = 0

\displaystyle \sum_{n=0}^\infty \bigg((n+2)(n+1) a_{n+2} - a_n\bigg) x^n = 0

Then the coefficients in the power series solution are governed by the recurrence relation,

\begin{cases}a_0 = y(0) \\ a_1 = y'(0) \\\\ a_{n+2} = \dfrac{a_n}{(n+2)(n+1)} & \text{for }n\ge0\end{cases}

Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.

• If n is even, then n = 2k for some integer k ≥ 0. Then

k=0 \implies n=0 \implies a_0 = a_0

k=1 \implies n=2 \implies a_2 = \dfrac{a_0}{2\cdot1}

k=2 \implies n=4 \implies a_4 = \dfrac{a_2}{4\cdot3} = \dfrac{a_0}{4\cdot3\cdot2\cdot1}

k=3 \implies n=6 \implies a_6 = \dfrac{a_4}{6\cdot5} = \dfrac{a_0}{6\cdot5\cdot4\cdot3\cdot2\cdot1}

It should be easy enough to see that

a_{n=2k} = \dfrac{a_0}{(2k)!}

• If n is odd, then n = 2k + 1 for some k ≥ 0. Then

k = 0 \implies n=1 \implies a_1 = a_1

k = 1 \implies n=3 \implies a_3 = \dfrac{a_1}{3\cdot2}

k = 2 \implies n=5 \implies a_5 = \dfrac{a_3}{5\cdot4} = \dfrac{a_1}{5\cdot4\cdot3\cdot2}

k=3 \implies n=7 \implies a_7=\dfrac{a_5}{7\cdot6} = \dfrac{a_1}{7\cdot6\cdot5\cdot4\cdot3\cdot2}

so that

a_{n=2k+1} = \dfrac{a_1}{(2k+1)!}

So, the overall series solution is

\displaystyle y(x) = \sum_{n=0}^\infty a_nx^n = \sum_{k=0}^\infty \left(a_{2k}x^{2k} + a_{2k+1}x^{2k+1}\right)

\boxed{\displaystyle y(x) = a_0 \sum_{k=0}^\infty \frac{x^{2k}}{(2k)!} + a_1 \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!}}

4 0
3 years ago
On the grid, draw the graph of<br> y = 2x - 3<br> for values of x from -2 to 4<br> Q
Pie

Answer:

Plot these points:(-2,-7) (-1,-5) (0,-3) (1,-1) (2,1) (3,3) (4,5)

Step-by-step explanation:

You need to substitute your x values into the x of the equation y=2(3)-3 to find the y value...

3 0
3 years ago
An airplane is traveling at an altitude of 30,000 feet
Murljashka [212]

Answer:

10 minutes

Step-by-step explanation:

First, find how much higher the airplane has to travel:

35,000 - 30,000

= 5,000

To fine how long it will take, divide 5000 by 500

5000/500

= 10

So, it will take 10 minutes to get above 35,000 feet

5 0
3 years ago
What's 2/3 divided by 1/4
svlad2 [7]

Answer:

8/3 or 2 and 2/3

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Help!!!!!! What is 80% of 25?
    12·2 answers
  • What is z 15 = -45+ z
    5·1 answer
  • Solve the following equation: 4x+2=18
    13·2 answers
  • Anna can buy 12 muffins for $4.80 or 6 muffins for $2.70. Which is the better deal? Explain
    6·1 answer
  • Which expression represents the perimeter of the model shown below? PLEASE HELP
    5·2 answers
  • What is the probability a customer ordered a small, given that he or she ordered a hot drink?
    13·2 answers
  • deja bought a bag of mixed nuts the bag has 1/3 pounds of nuts she and her three friends split the nuts equal how much did each
    6·1 answer
  • In previous courses, you learned to solve single step and multi-step equations algebraically. Take a minute to review what you a
    8·1 answer
  • Make a scatter plot of the data below.
    5·1 answer
  • Help 4567778776655555
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!