<h3>
Answer: Choice B</h3>
=========================================================
Explanation:
The rule we use is
![\Large a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m](https://tex.z-dn.net/?f=%5CLarge%20a%5E%7Bm%2Fn%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%5Em%7D%20%3D%20%5Cleft%28%5Csqrt%5Bn%5D%7Ba%7D%5Cright%29%5Em)
where 'a' is the base, m stays in the role of the exponent, and n plays the role of the root index (eg: n = 3 is a cube root, n = 4 is a fourth root, and so on).
So for instance,
![\Large 2^{3/4} = \sqrt[4]{2^3} = \left(\sqrt[4]{2}\right)^3](https://tex.z-dn.net/?f=%5CLarge%202%5E%7B3%2F4%7D%20%3D%20%5Csqrt%5B4%5D%7B2%5E3%7D%20%3D%20%5Cleft%28%5Csqrt%5B4%5D%7B2%7D%5Cright%29%5E3)
or in this case,
![\Large t^{5/8} = \sqrt[8]{t^5} = \left(\sqrt[8]{t}\right)^5](https://tex.z-dn.net/?f=%5CLarge%20t%5E%7B5%2F8%7D%20%3D%20%5Csqrt%5B8%5D%7Bt%5E5%7D%20%3D%20%5Cleft%28%5Csqrt%5B8%5D%7Bt%7D%5Cright%29%5E5)
Answer:
Option 1
Step-by-step explanation:
Rational numbers do not have infinite decimals.
Option 1:
-5, 3/4 and √49 are all rational. Correct
√49 = 7
3/4 = 0.75
-5 = -5
Option 2:
1/4 = 0.25
5 = 5
√12 = 3.4641...
Incorrect
Option 3:
-1/2 = -0.5
-3 = -3
√8 = 2.82841...
Incorrect
Option 4:
1/7 = 0.142857...
9 = 9
√11 = 3.31662...
Incorrect