Answer: 3.97000947 × 10^4
Answer:
- Height = <u>9</u><u> </u>cm which means <u>Option </u><u>C </u>is the answer
Step-by-step explanation:
In the question we are given ,
- Volume of cylinder = <u>2</u><u>2</u><u>5</u><u>π</u><u> </u><u>cm³</u>
- Radius of cylinder = <u>5 cm</u>
And , we have to find the <u>height</u><u> of</u><u> </u><u>cylinder</u><u> </u>.
We know that ,

Our solution starts from here :

<u>Step </u><u>1</u><u> </u><u>:</u> Cancelling π with π :

<u>Step </u><u>2</u><u> </u><u>:</u> Substituting value of radius which is 5 cm in the formula :


<u>Step </u><u>3 </u><u>:</u> Transposing 25 to right hand side :

<u>Step </u><u>4</u><u> </u><u>:</u> Cancelling 225 by 25 :

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>height</u><u> </u><u>of </u><u>cylinder</u><u> is</u><u> </u><u>9</u><u> </u><u>cm</u>
<h2 /><h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
The answer here is C. The sign of the factors are both positive. We can use the FOIL method as reference in determining the sign of the factors. The 3rd term C is positive; therefore our only option is either both negative or both positive. Looking the middle term, which is positive, we know that the middle term is the sum of the outer and inner in FOIL method, which means, signs of the factors must be both positive
Answer:
25
Step-by-step explanation:
25 25
Answer:
<em><u>The</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>9x</u></em><em><u>²</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3x</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>2</u></em><em><u>.</u></em>
Step-by-step explanation:
1) Collect like terms.

2) Simplify.

<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>9x</u></em><em><u>²</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3x</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>2</u></em>.