Answer: Yes
Step-by-step explanation:
For the first sugar and servings part, 4 for sugar, 2 for servings.
The ratio for this example above it for sugars to servings it 2:1. So every 2 sugars is every 1 serving and this applies to every other of the sugars and servings in the table.
Answer:
AY = 16
IY = 9
FG = 30
PA = 24
Step-by-step explanation:
<em>The </em><em>centroid </em><em>of the triangle </em><em>divides each median</em><em> at the ratio </em><em>1: 2</em><em> from </em><em>the base</em>
Let us solve the problem
In Δ AFT
∵ Y is the centroid
∵ AP, TI, and FG are medians
→ By using the rule above
∴ Y divides AP at ratio 1: 2 from the base FT
∴ AY = 2 YP
∵ YP = 8
∴ AY = 2(8)
∴ AY = 16
∵ PA = AY + YP
∴ AP = 16 + 8
∴ AP = 24
∵ Y divides TI at ratio 1: 2 from the base FA
∴ TY = 2 IY
∵ TY = 18
∴ 18 = 2
→ Divide both sides by 2
∴ 9 = IY
∴ IY = 9
∵ Y divides FG at ratio 1:2 from the base AT
∴ FY = 2 YG
∵ FY = 20
∴ 20 = 2 YG
→ Divide both sides by 2
∴ 10 = YG
∴ YG = 10
∵ FG = YG + FY
∴ FG = 10 + 20
∴ FG = 30
This is a common factor problem.
Pencils come in a pack of 12
Erasers come in a pack of 10
First, break the number into their prime factors(the idea is that we will break the number down into its smallest multiples, which are prime numbers):
10 = 2 * 5
12 = 2 * 2 *3
So now we take the unique multiples of each number, and when we multiply them together, we will get the smallest number that both 10 and 12 can be divided into(this is what the problem is asking for)
We have (2*2*3) that comes from 12, and the only unique number that comes from the 10 is (5)
So now, we multiply:
2*2*3*5=60
However, this isn't exactly out answer. Now we have to divide our answer by the number of each this in the pack to know how many packs to buy.
60/12=5 packs of pencils
60/10= 6 packs of erasers
I hope this helps. Let me know if you have any questions!!
540-35x= y
540 is the amount she has minus 35 and x is the weeks she withdrawn the money and y is the answer.