Answer:
Classifying stars according to their spectrum is a very powerful way to begin to understand how they work. As we said last time, the spectral sequence O, B, A, F, G, K, M is a temperature sequence, with the hottest stars being of type O (surface temperatures 30,000-40,000 K), and the coolest stars being of type M (surface temperatures around 3,000 K). Because hot stars are blue, and cool stars are red, the temperature sequence is also a color sequence. It is sometimes helpful, though, to classify objects according to two different properties. Let's say we try to classify stars according to their apparent brightness, also. We could make a plot with color on one axis, and apparent brightness on the other axis, like this:
Explanation:
Explanation:
Atoms never gain protons; they become positively charge only by losing electrons. A positive ion is called a cation (pronounced: CAT-eye-on). You may have notice that the number of neutrons in each of these ions was not specified.
Answer:
there are 20 oxygen atoms in 4.00 moles of Dinitrogen pentoxide
Explanation:
there are 2 atoms in an oxygen molecule , so each oxygen molecules has at least 2. Dinitrogen pentoxide is N2O5, which has 7 atoms, 2 nitrogen and 5 oxygen. 1 molecule of N2O5 has 5 oxygen atoms, so 4 of then would be 20
Answer:
9.72 grams.
Explanation:
From the equation, 4 moles of NH₃ produce 6 moles of water.
Therefore the reaction to product ratio of NH₃ to H₂O is 4:6
and 2:3 into its simplest form.
The number of moles of NH₃ in 6.12 g is:
Number of moles=mass/ RMM
=6.12 g/17 G/mol
=0.36 moles.
Therefore the number of moles of H₂O produced is calculated as follows.
(0.36 Moles×3)2 = 0.54 moles
Mass= Number of moles × RMM
=0.54 moles×18g/mol
=9.72 grams.