We have to know the molarity of solution obtained when 5.71 g of Na₂CO₃.10 H₂O is dissolved in water and made up to 250 cm³ solution.
The molarity of solution obtained when 5.71 g of sodium carbonate-10-water (Na₂CO₃.10 H₂O) is dissolved in water and made up to 250.0 cm^3 solutionis: (A) 0.08 mol dm⁻³
The molarit y of solution means the number of moles of solute present in one litre of solution. Here solute is Na₂CO₃.10 H₂O and solvent is water. Volume of solution is 250 cm³.
Molar mass of Na₂CO₃.10 H₂O is 286 grams which means mass of one mole of Na₂CO₃.10 H₂O is 286 grams.
5.71 grams of Na₂CO₃.10 H₂O is equal to
= 0.0199 moles of Na₂CO₃.10 H₂O. So, 0.0199 moles of Na₂CO₃.10 H₂O present in 250 cm³ volume of solution.
Hence, number of moles of Na₂CO₃.10 H₂O present in one litre (equal to 1000 cm³) of solution is
= 0.0796 moles. So, the molarity of the solution is 0.0796 mol/dm³ ≅ 0.08 mol/dm³
Global warming is the long-term heating of Earth's climate system observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth's atmosphere
Answer:
The enthalpy of reaction for the reaction of chlorine with ozone is -162.5 kJ.
Explanation:
..[1]
..[2]
..[3]
The enthalpy of reaction for the reaction of chlorine with ozone can be calculated by using Hess's law:
[2] - [1] = [3]


The enthalpy of reaction for the reaction of chlorine with ozone is -162.5 kJ.
The total volume of water that would be removed will be 75 mL
<h3>Dilution equation</h3>
Using the dilution equation:
M1V1 = M2V2
In this case, M1 = 500 mL, V1 = 10.20 M, M2 = 12 M
Substitute:
V2 = 500 x 10.20/12
= 425 mL
The final volume in order to arrive at 12 M HNO3 would be 425 mL from the initial 500 mL. Thus, the total amount of water that will be removed by evaporation can be calculated as:
500 - 425 = 75 mL
More on dilution can be found here: brainly.com/question/7208939
Answer:
Option (2)
Explanation:
Cohesion is usually defined as the contrasting property by which the water molecules are attached to one another, and adhesion is the property by which the molecular substances are linked to the molecules of other substances.
Since, the water molecules are able to form inter-molecular hydrogen bonding, so they are comprised of strong cohesive force.
And, as the water molecules are able to stick to the walls of the container, so they tend to show more of the properties for adhesion.
Thus, according to the given condition, water molecules are sticking to other substances and this is the property of adhesion.
Hence, the correct answer is option (2).