The power of is series combination is Vn^2 times that of a parallel combination.
For series combination :
Req = R + R + R + ............... n times = nR
I = Δv/nr
Power = (Δv/nr)^2 × nr = Δv^2/nr
For parallel combination
1/req = 1/R + 1/R + 1/R +................(n times) = n/R
Req = R/n
Power = Δv/(R/n) = nΔv^2/R
Ratio = Δv^2/nr/n·Δv^2/R = 1/n^2
Hence, power of is series combination is Vn^2 times that of a parallel.
Learn more about parallel combination here:
brainly.com/question/12400458
#SPJ4
Answer:
a) the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b) the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s
Explanation:
Given the data in the question;
as the equation of standing wave on a string is fixed at both ends
y = 2AsinKx cosωt
but k = 2π/λ and ω = 2πf
λ = 4 × 0.150 = 0.6 m
and f = v/λ = 260 / 0.6 = 433.33 Hz
ω = 2πf = 2π × 433.33 = 2722.69
given that A = 2.20 mm = 2.2×10⁻³
so
= A × ω
= 2.2×10⁻³ × 2722.69 m/s
= 5.9899 m/s
therefore, the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b)
A' = 2AsinKx
= 2.20sin( 2π/0.6 ( 0.075) rad )
= 2.20 sin( 0.7853 rad ) mm
= 2.20 × 0.706825 mm
A' = 1.555 mm = 1.555×10⁻³
so
= A' × ω
= 1.555×10⁻³ × 2722.69
= 4.2338 m/s
Therefore, the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s