At First, there is chemical Energy( in your muscels) which is Used to Push down the spring. This Energy becomes the Energy of the spring, which increases until you stop pushing. If you Put your hand away, the Energy of the spring will become kinetic energ. This Energy is at the highest Level the Moment the book ist Leaving the spring. Afterwards, the kinetic Energy decreases while the Gravitational Potential Energy increases.
Answer:
a = 1.764m/s^2
Explanation:
By Newton's second law, the net force is F = ma.
The equation for friction is F(k) = F(n) * μ.
In this case, the normal force is simply F(n) = mg due to no other external forces being specified
F(n) = mg = 15kg * 9.8 m/s^2 = 147N.
F(k) = F(n) * μ = 147N * 0.18 = 26.46N.
Assuming the object is on a horizontal surface, the force due to gravity and the normal force will cancel each other out, leaving our net force as only the frictional one.
Thus, F(net) = F(k) = ma
26.46N = 15kg * a
a = 1.764m/s^2
Answer:
Therefore letter <u>C is the correct answer.</u>
Explanation:
In a projectile motion the total time in the air can be calculated using the following equation:
We analyze the y-component motion.

When the final velocity (v(f)) is equal to zero we calculate the upward time and multiplying it by 2 we find the total time in the air. So we will have:


We can see that the <u>total time is directly proportional to the angle</u>, then when <u>θ increase t increase.</u>
Therefore letter C is the correct answer.
I hope it helps you!
Answer:
Resistance in circuit = 0.53 ohm (Approx.)
Explanation:
Given:
Flow of current in circuit = 15 amp
Potential difference = 8 Volts
Find:
Resistance in circuit
Computation:
In an electrical system, resistance is a stopper of a material to electric current.
Resistance in circuit = Potential difference / Flow of current in circuit
Resistance in circuit = 8 / 15
Resistance in circuit = 0.53 ohm (Approx.)