Answer:
(4 + 2√5) i
Step-by-step explanation:
√(-16) + √(-25 + 5)
√(-16) + √(-20)
4i + 2i√5
(4 + 2√5) i
Answer:
9(x+3) + 2(x+3) or 10(x+2) +(x+5)
Step-by-step explanation:
First you want to distribute the equation.
4(x+1) + 7(x+3) multiplied out is
4x + 4 + 7x + 21
Now we add like terms so it comes out to
11x + 25
Two expressions that can come out to equal 11x + 25 is. 9(x+3) + 2(x+3) or 10(x+2) +(x+5)
It factorises to -
4(x+6)
<h3>Given</h3>
Two positive numbers x and y such that xy = 192
<h3>Find</h3>
The values that minimize x + 3y
<h3>Solution</h3>
y = 192/x . . . . . solve for y
f(x) = x + 3y
f(x) = x + 3(192/x) . . . . . the function we want to minimize
We can find the x that minimizes of f(x) by setting the derivative of f(x) to zero.
... f'(x) = 1 - 576/x² = 0
... 576 = x² . . . . . . . . . . . . multiply by x², add 576
... √576 = x = 24 . . . . . . . take the square root
... y = 192/24 = 8 . . . . . . . find the value of y using the above equation for y
The first number is 24.
The second number is 8.