Its unstable and flammable... the Hindenberg used it... we saw how that went
Answer:
Moles NH₃: 0.0593
0.104 moles of N₂ remain
Final pressure: 0.163atm
Explanation:
The reaction of nitrogen with hydrogen to produce ammonia is:
N₂ + 3 H₂ → 2 NH₃
Using PV = nRT, moles of N₂ and H₂ are:
N₂: 1atmₓ3.0L / 0.082atmL/molKₓ273K = 0.134 moles of N₂
H₂: 1atmₓ2.0L / 0.082atmL/molKₓ273K = 0.089 moles of H₂
The complete reaction of N₂ requires:
0.134 moles of N₂ × (3 moles H₂ / 1 mole N₂) = <em>0.402 moles H₂</em>
That means limiting reactant is H₂. And moles of NH₃ produced are:
0.089 moles of H₂ × (2 moles NH₃ / 3 mole H₂) = <em>0.0593 moles NH₃</em>
Moles of N₂ remain are:
0.134 moles of N₂ - (0.089 moles of H₂ × (1 moles N₂ / 3 mole H₂)) = <em>0.104 moles of N₂</em>
And final pressure is:
P = nRT / V
P = (0.104mol + 0.0593mol)×0.082atmL/molK×273K / 5.0L
<em>P = 0.163atm</em>
Answer: Option C. p-dichlorobenzene and 1,4-dichlorobenzene.
Explanation:
A line-angle formula with six vertices and a circle inscribed corresponds to the compound known as benzene.
Further, according to the IUPAC standards for naming benzene derivatives, you must first number the position of the substituent. In this case, the substituents (chloros) are located at the positions 1 and 4; also, for the benzene derivatives when they have 2 substituents and the positions are 1 and 4, this configuration is known as <em>para </em>or <em>p </em>configuration.
Additionally, this compound has 2 substituents (chloros) so you have to indicate this number (di).
Therefore, the correct answer is C. p-dichlorobenzene and 1,4-dichlorobenzene.
Answer:
The correct answer is the final pair: C4H10 and C2H5
Explanation:
Took the test and it was right. :)
Answer:
2.00 M
Explanation:
The formula mass of aluminum oxide is 2(27)+3(16)=102 g/mol.
So, there is 1 mole of solute in 500 mL=0.5 L of solution
Now, we can use the equation molarity = (moles of solute)/(liters of solution)
- molarity = 1/0.5 = <u>2.00</u><u> </u><u>M</u>