Explanation :
The balanced chemical reaction is,

The expression for the rates of consumption of the reactants are:
The rate of consumption of
= ![-\frac{1}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
The rate of consumption of
= ![-\frac{d[BrO_3^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D)
The rate of consumption of
= ![\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
The expression for the rates of formation of the products are:
The rate of consumption of
= ![+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
The rate of consumption of
= ![+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
Answer:
eletrons
Explanation:
eletrons is not in the neuclus its around it
The postmortem cooling or algor mortis gets fixed by 8- 10 hours after death. The temperature of the body after death can be used to determine the time since death.
Answer:
1,085g of water
Explanation:
If we have the value 4520kj is because the question is related to Energy and heat capacity. In this case, the law and equation that we use is the following:
Q= m*C*Δt where;
Q in the heat, in this case: 4520kj
m is the mas
Δt= is the difference between final-initial temperature (change of temperature), in this exercise we don´t have temperatura change.
In order to determine the mass, I will have the same equation but finding m
m= Q/C*Δt without m=Q/C
So: m= 4,520J/4.18J/g°C
m= 1,0813 g