1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
14

Best answer will be awarded the brainliest and 5 stars solve this problem using estimation and rounding each amount to the neare

st ten dollars so Over a two month period Mr Bryants sixth grade class donated their spare change to help another student whose home burned. The class raised $58.23 the first month and $66.57 the second month about how much money did Mr. Bryants class raise for their classmate
Mathematics
2 answers:
frutty [35]3 years ago
7 0
The answer is:  " $ 130.00 " ;  or, write as:  " $ 130 " .
_________________________________________________________
Explanation:
_________________________________________________________
                →     { $ 58.23  +  $ 66.57 } ;
_________________________________________________________
  →    Round EACH of these TWO (2) values to the nearest TEN (10) dollars ;
    {as per the instructions specified in THIS VERY "Brainly" question/ problem} ; 
_________________________________________________________
  →  Start with the first 'given value' :    →   " $ 58.23 "  ; 
_________________________________________________________
→  We are instructed to round to the nearest TEN (10) dollars ; 

→
 Do we round to:  "$ 50.00" ? ; or, to:  "$ 60.00" ?

→  Since the amount is:  " $ 58.23 " ; 

→ We look the value of the
"digit" that appears in the "space" DIRECTLY AFTER the:                            " ($5) " .   

                  →  If the [said digit] is:  "5 or greater" {i.e., "5, 6, 7, 8, or 9"} ;                     
                                                  then we round (up) to:  " $ 60.00 " .                                                          
                  →  If the [said digit] is:  "4 or lesser" {i.e., "4, 3, 2, 1, or 0") ; 
                                                  then we round (down) to:  " $ 50.00 " .

→ Since the [said digit] in the value, " $ 58.23" ; is:  "8" ;              

→ { and since:  "8" — is a [number/digit) that is:  "5 or greater" } ; 

→ We round (up) to:
  " $60.00 " .
__________________________________________________________
→  Now, let us consider the "second value" given to us:   →  " $ 66.57 " ; __________________________________________________________
→  We are instructed to round to the nearest TEN (10) dollars ; 

→  Do we round to:  " $ 60.00" ? ;  or,  to:  " $ 70.00"  ?

→  Since the amount is:  " $ 66.57 " ; 

→ We look the value of the
 "digit" that appears in the "space" DIRECTLY AFTER the:                            " ($6) " ;

                   →  If the [said digit] is:  "5 or greater" {i.e., "5, 6, 7, 8, or 9"} ;                      
                                                  then we round (up) to:  " $70.00 " .                                                          
                  →  If the [said digit] is:  "4 or lesser" {i.e., "4, 3, 2, 1, or 0") ;  
                                                  then we round (down) to:  " $60.00 " .
                                                        
.→ Since the [said digit] in the value, " $ 66.57 " ; is:  "6" ;              

 →  { and since:  "6" — is a [number/digit) that is:  "5 or greater" } ; 

 →  We round (up) to:  " $70.00 " .
._____________________________________________________
 →  So;  as per the instructions in this very "Brainly" question/problem  ; 
_____________________________________________________
We rewrite:   →  { $ 58.23  +  $ 66.57 } ;

   →  <u>by substituting</u>:  "$60.00" (in lieu of:  "$58.22") ;  <u><em>and</em></u>

   →  <u>by substituting</u>:  "$70.00" (in lieu of:  "$66.67") ;  
________________________________________________________
   →  as follows:
________________________________________________________
      →  { $60.00  +  $70.00 } ;

      →
and add these 2 (TWO) "rounded" values together; as follows:
________________________________________________________
      
→  { $ 60.00  +  $ 70.00 } ;   to get:  
________________________________________________________
        =  " $ 130.00 " ; or, write as:  " $ 130 " .
 ________________________________________________________ 
NemiM [27]3 years ago
6 0
To the nearest 10 dollars, $130
You might be interested in
Are 7 and 42 relatively prime
Iteru [2.4K]
7 is a prime number, 72 is not a prime number.
Hope this helped!:)

8 0
3 years ago
Please help me with math!
Lana71 [14]
B should be correct
Hope that helped
4 0
3 years ago
William has a lemonade stand. Today he made $17.55 in lemonade sales and one third that amount in cookie sales. How much money d
ira [324]
All together he made 23.40
One third of $17.55 is $5.85
When you add $17.55 and $5.85 together you get $23.40
4 0
3 years ago
The first term of a geometric sequence is 32, and the 5th term of the sequence is 818 .
sammy [17]

Answer:

32,24,18,\frac{27}{2} ,\frac{81}{8}

Step-by-step explanation:

Let x, y , and z be the numbers.

Then the geometric sequence is 32,x,y,z,\frac{81}{8}

Recall that  term of a geometric sequence  are generally in the form:

a,ar,ar^2,ar^3,ar^4

This implies that:

a=32 and ar^4=\frac{81}{8}

Substitute a=32 and solve for r.

32r^3=\frac{81}{8}

r^4=\frac{81}{256}

Take the fourth root to get:

r=\sqrt[4]{\frac{81}{256} }

r=\frac{3}{4}

Therefore x=32*\frac{3}{4} =24

y=24*\frac{3}{4} =18

z=18*\frac{3}{4} =\frac{27}{2}

8 0
3 years ago
How to solve linear equations using graphs
Artemon [7]

Explanation:

We usually use graphs to solve two linear equations in two unknowns.

The basic idea is that a graph of an equation is the pictorial representation of all of the points that satisfy the equation. So, where the graph of one equation crosses the graph of another, the point where they cross will satisfy both equations.

Finding a solution means finding values of the variables that satisfy all of the equations. Hence, the point of intersection is the solution of the equations.

__

To solve linear equations by graphing, graph each of the equations. Then find the coordinates of the point where the lines intersect. Those coordinates are the solution to the equations.

If the solution is not at a grid point on the graph, determining its exact value may not be easy. This can often be aided by a graphing calculator, which can often tell you the point of intersection to calculator accuracy.

__

If the lines don't intersect, there are no solutions. If they are the same line (intersect everywhere), then there are an infinite number of solutions.

3 0
3 years ago
Other questions:
  • Making Sense of Slope - Item 32544
    6·1 answer
  • Given x-8&gt;-3 choose the selection set
    7·2 answers
  • If x^2+1/x=18 then find The value of x minus 1/x
    12·1 answer
  • Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the corre
    15·1 answer
  • PLS I NEED HELP! Write a function rule for the data in the following table.
    7·2 answers
  • Please help ⚠️⚠️⚠️⚠️⚠️
    6·1 answer
  • Please review the following attachment. Thanks!
    8·1 answer
  • For each of the following pairs of signed integers (2’s complement), subtract the second from the first. Show the decimal equiva
    10·1 answer
  • 1. If 12 kg of sugar cost $ 250, calculate the cost of 20 kg of sugar.
    13·1 answer
  • Median of 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!