1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
3 years ago
8

PLEASE PLEASE I NEED HELP ASAP

Mathematics
1 answer:
Sidana [21]3 years ago
3 0
AE = AC = 4

m<CAB = 60 (equilateral triangle)
m<CAE = 90 (square)

m<BAE = 150 (= 60 + 90)

Triangle BAE is isosceles since AB = AE;
therefore, m<AEB = m<ABE.

m<AEB + m<ABE + m<BAE = 180

m<AEB + m< ABE + 150 = 180

m<AEB + m<AEB = 30

m<AEB = 15

In triangle ABE, we know AE = AB = 4;
we also know m<BAE = 150, and m<AEB = 15.

We can use the law of sines to find BE.

BE/(sin 150) = 4/(sin 15)

BE = (4 sin 150)/(sin 15)

BE = 7.727

You might be interested in
I need hlp with this sorry didn't know I didn't add an attachment the first time.
Eva8 [605]

the answers are

7/10

306/1000

1/100

9/1000


hope this helps!

8 0
3 years ago
1.8 times 15.42 please this question has me stuck
bazaltina [42]

Answer:

27.756

Step-by-step explanation:

1) Move all the decimal points to the right and do the multiplication

  18 * 1524 = 27756

1.8 to 19 = one move

15.42 to 1542 = two moves

total three decimal point shifts

2) count the number (total) that you moved the decimal points

3) starting from the right move the decimal point that many times to the LEFT in for the answer

27.756

3 0
3 years ago
The average waiting time for a drive-in window at a local bank is 9.2 minutes, with a standard deviation of 2.6 minutes. When a
Lady bird [3.3K]

Answer:

a) 56.91% probability that the customer will have to wait between 5 and 10 minutes.

b) 65.49% probability that the client will have to wait less than 6 minutes of more than 9 minutes.

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 9.2, \sigma = 2.6

(a) Between 5 and 10 minutes

This is the pvalue of Z when X = 10 subtracted by the pvalue of Z when X = 5. So

X = 10

Z = \frac{X - \mu}{\sigma}

Z = \frac{10 - 9.2}{2.6}

Z = 0.31

Z = 0.31 has a pvalue of 0.6217

X = 5

Z = \frac{X - \mu}{\sigma}

Z = \frac{5 - 9.2}{2.6}

Z = -1.62

Z = -1.62 has a pvalue of 0.0526

0.6217 - 0.0526 = 0.5691

56.91% probability that the customer will have to wait between 5 and 10 minutes.

(b) Less than 6 minutes or more than 9 minutes

Less than 6

pvalue of Z when X = 6

Z = \frac{X - \mu}{\sigma}

Z = \frac{6 - 9.2}{2.6}

Z = -1.23

Z = -1.23 has a pvalue of 0.1230

12.30% probability that the client will have to wait less than 6 minutes

More than 9

1 subtracted by the pvalue of Z when X = 9.

Z = \frac{X - \mu}{\sigma}

Z = \frac{9 - 9.2}{2.6}

Z = -0.08

Z = -0.08 has a pvalue of 0.4681

1 - 0.4681 = 0.5319

53.19% probability that the client will have to wait more than 9 minutes

Less than 6 or more than 9

12.30 + 53.19 = 65.49% probability that the client will have to wait less than 6 minutes of more than 9 minutes.

5 0
3 years ago
Julian’s friend James also has a tank in the shape of a triangular prism. The dimensions of James’ tank are each exactly 2 3/4 t
malfutka [58]

The approximate area of the triangular base of James’ tank is 3025 in²

To find the approximate area of the triangular base of James' tank, we need to know what scale is.

<h3>What is scale?</h3>

A scale is the ratio of two dimension. It is given by scale = New dimension/old dimension

Given that the dimensions of James’ tank are each exactly 2 3/4 times the dimensions of Julian’s tank.

The scale of the area of James' tank to the area of triangular base of Julian's tank is S = (2³/₄)²

= (11/4)²

= 121/16

Let

  • A = area of triangular base of James' tank,
  • A' = area of triangular base of Julian's tank = 400 in²

So, scale, S = A/A'

<h3>The approximate area of the triangular base of James’ tank</h3>

So, making A subject of the formula, we have

A = SA'

A = 121/16 × 400 in²

A = 121 × 25 in²

A = 3025 in²

So, the approximate area of the triangular base of James’ tank is 3025 in²

Learn more about area of triangle here:

brainly.com/question/27436493

#SPJ1

5 0
3 years ago
Can someone please help me ASAP​
FromTheMoon [43]

Answer:

D

Step-by-step explanation:

They should both level out at the same height considering the volume of hydrochloric acid used.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Consider the set {4, 5, 7, 8, 8, 12, 13, 13, 15, 18, 20, 22, 24, 26, 27, 37, 38}. if you were dividing the set into intervals, w
    6·1 answer
  • How do you find the probability of independent and dependent events?
    10·1 answer
  • 5) (m + 2)<br> binomial theorem
    6·1 answer
  • Add my roblox: caadden
    8·2 answers
  • Which expression is equivalent to (10x) 3?<br> 1000<br> 1000X3<br> 10/3
    5·2 answers
  • What decimal os equal to 1.3 %
    14·1 answer
  • Find the missing side length,
    6·1 answer
  • Simplify 5 x 5^2 leaving your answer in index form.​
    8·1 answer
  • Dealer sold two carrs for 1980 on first car he made 10 percent profit 10 percent loss
    13·1 answer
  • HELP ASAP PLEASE I BEG TOU
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!