Answer: (1) mean = 9.46; standard deviation = 3.74
Step-by-step explanation:
#1)
A) b = 10.57
B) a = 22.66; the different methods are shown below.
#2)
A) Let a = the side opposite the 15° angle; a = 1.35.
Let B = the angle opposite the side marked 4; m∠B = 50.07°.
Let C = the angle opposite the side marked 3; m∠C = 114.93°.
B) b = 10.77
m∠A = 83°
a = 15.11
Explanation
#1)
A) We know that the sine ratio is opposite/hypotenuse. The side opposite the 25° angle is b, and the hypotenuse is 25:
sin 25 = b/25
Multiply both sides by 25:
25*sin 25 = (b/25)*25
25*sin 25 = b
10.57 = b
B) The first way we can find a is using the Pythagorean theorem. In Part A above, we found the length of b, the other leg of the triangle, and we know the measure of the hypotenuse:
a²+(10.57)² = 25²
a²+111.7249 = 625
Subtract 111.7249 from both sides:
a²+111.7249 - 111.7249 = 625 - 111.7249
a² = 513.2751
Take the square root of both sides:
√a² = √513.2751
a = 22.66
The second way is using the cosine ratio, adjacent/hypotenuse. Side a is adjacent to the 25° angle, and the hypotenuse is 25:
cos 25 = a/25
Multiply both sides by 25:
25*cos 25 = (a/25)*25
25*cos 25 = a
22.66 = a
The third way is using the other angle. First, find the measure of angle A by subtracting the other two angles from 180:
m∠A = 180-(90+25) = 180-115 = 65°
Side a is opposite ∠A; opposite/hypotenuse is the sine ratio:
a/25 = sin 65
Multiply both sides by 25:
(a/25)*25 = 25*sin 65
a = 25*sin 65
a = 22.66
#2)
A) Let side a be the one across from the 15° angle. This would make the 15° angle ∠A. We will define b as the side marked 4 and c as the side marked 3. We will use the law of cosines:
a² = b²+c²-2bc cos A
a² = 4²+3²-2(4)(3)cos 15
a² = 16+9-24cos 15
a² = 25-24cos 15
a² = 1.82
Take the square root of both sides:
√a² = √1.82
a = 1.35
Use the law of sines to find m∠B:
sin A/a = sin B/b
sin 15/1.35 = sin B/4
Cross multiply:
4*sin 15 = 1.35*sin B
Divide both sides by 1.35:
(4*sin 15)/1.35 = (1.35*sin B)/1.35
(4*sin 15)/1.35 = sin B
Take the inverse sine of both sides:
sin⁻¹((4*sin 15)/1.35) = sin⁻¹(sin B)
50.07 = B
Subtract both known angles from 180 to find m∠C:
180-(15+50.07) = 180-65.07 = 114.93°
B) Use the law of sines to find side b:
sin C/c = sin B/b
sin 52/12 = sin 45/b
Cross multiply:
b*sin 52 = 12*sin 45
Divide both sides by sin 52:
(b*sin 52)/(sin 52) = (12*sin 45)/(sin 52)
b = 10.77
Find m∠A by subtracting both known angles from 180:
180-(52+45) = 180-97 = 83°
Use the law of sines to find side a:
sin C/c = sin A/a
sin 52/12 = sin 83/a
Cross multiply:
a*sin 52 = 12*sin 83
Divide both sides by sin 52:
(a*sin 52)/(sin 52) = (12*sin 83)/(sin 52)
a = 15.11
Use the formula I = Prt. Plug $2300 into P.
Plug 7.5% (decimal form is 0.075) into r.
Plug 10 into t.
Your simple interest after 10 years is $1725
Yes because the perimeter of the bulletin is 23 feet. this is because to find perimeter you use 2(L)+2(W).
Given:
After driving for 20 minutes, Juan was 62 miles away from his apartment.
After driving for 32 minutes Juan was only 38 miles away.
The time driving and the distance away from his apartment form a linear relationship.
To find:
The independent and dependent variables.
Solution:
If the value of a variable depends on the another, then it is called dependent variables.
If the value of a variable does not depend on the another, then it is called independent variables.
In the given problem, the distance of Juan from his apartment depends on the time he drove. So,
Dependent variable = Distance of Juan from his apartment in miles.
Independent variable = Time he drove