Answer:
The expression
= ![4x^{5}} (\sqrt[3]{3x})](https://tex.z-dn.net/?f=4x%5E%7B5%7D%7D%20%28%5Csqrt%5B3%5D%7B3x%7D%29)
Step-by-step explanation:
Given
![\sqrt[3]{16x^{7} } * \sqrt[3]{12x^{9} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E%7B7%7D%20%7D%20%20%2A%20%5Csqrt%5B3%5D%7B12x%5E%7B9%7D%20%7D)
Required
Products of both
To do this, we have to apply the laws of indices,
Follow the highlighted steps
Step 1: Multiply both parameters directly
Since they both have the same roots, they can be multiplied directly according to the law of indices
becomes
![\sqrt[3]{16x^{7} * 12x^{9} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E%7B7%7D%20%2A%2012x%5E%7B9%7D%20%7D)
Step 2: Apply the 1st law of indices
First law of indices states that

So,
becomes
= ![\sqrt[3]{16 * 12 * x^{7} * x^{9} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16%20%2A%2012%20%2A%20x%5E%7B7%7D%20%2A%20x%5E%7B9%7D%20%7D)
= ![\sqrt[3]{16 * 12 * x^{7+9} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16%20%2A%2012%20%2A%20x%5E%7B7%2B9%7D%20%7D)
= ![\sqrt[3]{16 * 12 * x^{16} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16%20%2A%2012%20%2A%20x%5E%7B16%7D%20%7D)
= ![\sqrt[3]{192 * x^{16} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B192%20%2A%20x%5E%7B16%7D%20%7D)
Step 3: Rewrite the expression
= 
Step 4: Expand the Expression in bracket
= 
Break down into bits
= 
= 
= 
= 
= 
= 
= 
= ![4x^{5}} * \sqrt[3]{3x}](https://tex.z-dn.net/?f=4x%5E%7B5%7D%7D%20%2A%20%5Csqrt%5B3%5D%7B3x%7D)
= ![4x^{5}} (\sqrt[3]{3x})](https://tex.z-dn.net/?f=4x%5E%7B5%7D%7D%20%28%5Csqrt%5B3%5D%7B3x%7D%29)
Hence, the expression
= ![4x^{5}} (\sqrt[3]{3x})](https://tex.z-dn.net/?f=4x%5E%7B5%7D%7D%20%28%5Csqrt%5B3%5D%7B3x%7D%29)