1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
4 years ago
11

Solve for x. 4x - 4 < 8 and 9x + 5 > 23

Mathematics
1 answer:
nasty-shy [4]4 years ago
7 0

Answer:

x and x>2

Step-by-step explanation:

4x - 4 < 8\\4x

9x+5>23\\9x>23-5\\9x>18\\x>\frac{18}{9}\\ x>2

You might be interested in
I WILL GIVE BRAINLIEST TO WHOEVER IS CORRECT
docker41 [41]

Answer:

A=P

B=Q

AC=PR

AB/PQ=BC=QR


Only one incorrect is BC=QR because there is no line above the letters telling you that they are lines.

Step-by-step explanation:


6 0
3 years ago
How do I turn this into slope-intercept form
Fittoniya [83]
Use y=mx+b. you subtract the 6x on both sides and divide by the negative 3 on both sides. you should get y=2x-3
5 0
3 years ago
Cathy wants to pack 100 gifts. The packaging includes a closed box made out of cardboard. The dimensions of the box are 11cm Lon
wlad13 [49]

Answer:

10800\ \text{cm}

Step-by-step explanation:

l = Length = 11 cm

w = Width = 8 cm

h = Height = 8 cm

Perimeter of cardboard required for one box is

4(l+w+h)=4(11+8+8)\\ =108\ \text{cm}

There are 100 gifts to pack so the total amount of cardboard needed would be

108\times 100=10800\ \text{cm}

So, the minimum amount of cardboard Cathy needs to package all the gifts is 10800\ \text{cm}.

6 0
3 years ago
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
Find the zeros of Cubic Polynomial and verify that the relationship between the zeros and the coefficients.
bezimeni [28]

\bf \large \: Hope \:  It  \: Helps \:  You!

6 0
3 years ago
Other questions:
  • D = {x|x is a whole number}
    5·1 answer
  • What's the product of 3 2⁄3 and 14 2⁄5 ?
    9·2 answers
  • Worth 30 points please help). The tightrope walker tried to catch his phone and also fell but he fell safely on the safety net t
    12·1 answer
  • Is the statement [x]=[x+1] true for all real numbers? explain
    12·2 answers
  • Jenna wants to rent a mountain bike by the week. Identify the independent variables that affect the total rental cost.
    14·1 answer
  • Help!!!!!!!!!!!!!!!!!!!!!plz!!!!!!!!
    10·1 answer
  • 20. What is the y-intercept of the line<br> y + 11 = -2(x + 1.5).
    8·2 answers
  • TRUE or FALSE: Consecutive interior angles are always congruent.
    5·1 answer
  • I NEED HELP ASAP PLEASE!!!
    14·1 answer
  • Plsease help me with this one plsease
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!