Where are the master plans stored and order given?
Answer:
2.83 kg
Explanation:
Given:
Volume, V = 0.8 m³
gage pressure, P = 200 kPa
Absolute pressure = gage pressure + Atmospheric pressure
= 200 + 101 = 301 kPa = 301 × 10³ N/m²
Temperature, T = 23° C = 23 + 273 = 296 K
Now,
From the ideal gas equation
PV = mRT
Where,
m is the mass
R is the ideal gas constant = 287 J/Kg K. (for air)
thus,
301 × 10³ × 0.8 = m × 287 × 296
or
m = 2.83 kg
Answer:
hello your question is incomplete attached below is the missing diagram to the question and the detailed solution
Answer : principal stresses : 0.82 MPa, -33.492 MPa
shear stress = 17.157 MPa
∅ = 9.09 ≈ 10°
Explanation:
The principal stress ( б1 ) = 0.82 MPa
( б2 ) = -33.492 MPa
The shear stress = 17.157 MPa
∅ = 9.09 ≈ 10°
attached below is the detailed solution and the Mohr's circle
Answer:
c
Explanation:
You never want short system terminals
Answer:
c) It takes a greater hydraulic head to drive the groundwater laterally to the well casing in the lower permeability aquifer
Explanation:
The groundwater are contains under the rock and in the open spaces within the rocks and the unconsolidated sediments. Aquifer refers to the underground layers of the permeable sand or rocks that transmits the groundwater below water table which provides a sufficient supply of water to the well. Groundwater is present everywhere where there is porosity in the rocks and it depends on the permeability of the rocks to allow them flow.
A drawdown cone is completed in the lower permeable aquifer deeper and narrower than the high permeable aquifer as it takes more amount hydraulic head or energy to drive groundwater to the well casing which is in the lower permeable aquifer.