Oxygen has six valence (outer-shell) electrons so therefore gains two more electrons to form the O-2 ion Its electron configuration is: 1s2 2s2 2p6 or Ne
If this helped mark Brainliest!
Variables we know:
t = 8 seconds
Vi = 0 m/s
g = -9.81
Δy = ?
Vf = ?
Equation we will be using to solve for Vf: Vf = Vi + gt
Steps to solve:
Vf = (0) + (-9.81)(8)
Vf = -78.48 m/s
Hope this helps!! :)
The answer is
<span>
only carboxyl groups (=C=OO-</span>
Answer:
669.48 kJ
Explanation:
According to the question, we are required to determine the heat change involved.
We know that, heat change is given by the formula;
Heat change = Mass × change in temperature × Specific heat
In this case;
Change in temperature = Final temp - initial temp
= 99.7°C - 20°C
= 79.7° C
Mass of water is 2000 g ( 2000 mL × 1 g/mL)
Specific heat of water is 4.2 J/g°C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 joules
But, 1 kJ = 1000 J
Therefore, heat change is 669.48 kJ
Answer:
d. 127 g/mol.
Explanation:
Hello!
In this case, since we have the amount of molecules of this this compound, we are able to compute the moles out there by using the Avogadro's number:

Which correspond to the moles of X2. Then, by using the mass we are able to compute the molar mass of X2:

It means that the atomic mass of X halves the molar mass of X2, which is then d. 127 g/mol.
Best regards!