P1T2 = P2T1
(3.8)(36)=25P2
136.8=25P2
136.8/25=P2
P2=5.472atm
Answer:
186.9Kelvin
Explanation:
The ideal gas law equation is PV
=
n
R
T
where
P is the pressure of the gas
V is the volume it occupies
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821
atm L
/mol K
T is the absolute temperature of the gas
Ensure units of the volume, pressure, and temperature of the gas correspond to R
( the universal gas constant, equal to 0.0821
atm L
/mol K
)
n
=
3.54moles
P= 1.57
V= 34.6
T=?
PV
=
n
R
T
PV/nR = T
1.57 x 34.6/3.54 x 0.0821
54.322/0.290634= 186.908620464= T
186.9Kelvin ( approximately to 1 decimal place)
The reaction involved here would be written as:
2N2 + 3H2 = 2NH3
The equilibrium constant of a reaction is the ratio of the concentrations of the products and the reactants when in equilibrium. The expression for the equilibrium constant of this reaction would be as follows:
Kc = [NH3]^2 / [N2]^2[H2]^3
Kc = 0.40^2 / (0.20)^2 (0.10)^3
Kc = 4000
I will have to go with carbon monoxide
Answer: The image from the question has the correct answers.
Explanation:
As summarized in the attached table.