Answer:
48 g/mol
Explanation:
Step 1: Calculate the mass of the gas (m)
According to the law of conservation of mass, the mass of the solid before the decomposition must be equal to the sum of the masses of the solid residue and the gas
mSolid = mResidue + mGas
mGas = mSolid - mResidue = 4.73 g - 4.10 g = 0.63 g
Step 2: Convert 320 cm³ to L
We will use the conversion factor 1 L = 1000 cm³.
320 cm³ × 1 L/1000 cm³ = 0.320 L
Step 3: Calculate the moles of gas (n)
The gas is at room temperature (298.15 K) and room pressure (1 atm). We can calculate the moles of gas using the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.320 L/(0.0821 atm.L/mol.K) × 298.15 K = 0.0131 mol
Step 4: Calculate the molecular mass of the gas (M)
We will use the following expression.
M = m/n = 0.63 g/0.0131 mol = 48 g/mol
Answer:
If the hydrated salt is overheated, it causes the anhydrous salt to decompose, causing the product to be lost as gas. The reported percentage of water loss will be too high because the gap between the initial measurement and final (which will be lower due to loss of sample) measurement will widen.
Answer:
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks.
0.35 moles carbon dioxide (6.022 X 10^23/1 mole CO2) = 2.1 X 10^23 atoms of
<span>
carbon dioxide
</span>