Answer:
Ammonia gas reacts with oxygen gas.
Nitric oxide gas and liquid water are produced.
Platinum is used as a catalyst.
The equation is unbalanced because the number of hydrogen atoms is not the same on both sides of the equation.
Explanation:
Answer:
0.665 moles of CO₂
Explanation:
The balance chemical equation for the combustion of Ethane is as follow:
2 C₂H₆ + 7 O₂ → 4 CO₂ + 6 H₂O
Step 1: <u>Calculate moles of C₂H₆ as;</u>
Moles = Mass / M.Mass
Putting values,
Moles = 10.0 g / 30.07 g/mol
Moles = 0.3325 moles
Step 2: <u>Calculate Moles of CO₂ as;</u>
According to balance chemical equation,
2 moles of C₂H₆ produced = 4 moles of CO₂
So,
0.3325 moles of C₂H₆ will produce = X moles of CO₂
Solving for X,
X = 0.3325 mol × 4 mol ÷ 2 mol
X = 0.665 moles of CO₂
Answer:-
Alpha decay
Explanation:-
Uranium 238 has atomic number 92 and mass number 238.
Thorium 234 has atomic number 90 and mass number 234.
So, the change in atomic number as uranium 238 disintegrates into thorium234 = 92 – 90 = 2
So, the change in mass number as uranium 238 disintegrates into thorium234= 238 – 234 = 4
We know that when an alpha particle is emitted, the mass number decreases by 4 and the atomic number decreases by 2.
So when an atom of uranium 238 undergoes radioactive decay to form an atom of thorium-234, alpha decay has occurred.
Hey there!
<span>Use the equation of Clapeyron:
</span>
T in kelvin :
26 + 273.15 => 299.15 K
R = 0.082
V = 10.2 L
P = 0.98 atm
number of moles :
P *V = n * R * T
0.98 * 10.2 = n * 0.082 * 299.15
9.996 = n * 24.5303
n = 9.996 / 24.5303
n = 0.4074 moles
Therefore:
Molar mass H2O = 18.01 g/mol
1 mole H2O ------------- 18.01 g
0.4074 moles ----------- m
m = 0.4074 * 18.01 / 1
m = 7.339 g of H2O
Answer:
If you continue to cool water past 4 degrees Celsius, its density starts to plummet (you can see this in the graph). At zero degrees, i.e., the temperature at which water turns into ice, the density of water is actually quite low. It turns out that ice has a lower density than water, and any object that has a lower density than the liquid form on which it’s kept (in this case, water) will be able to float!
Explanation: