Explanation:
Space exploration was aided most by the use of liquid fuel.
<em>Hope</em><em> </em><em>this helps</em><em>.</em><em>.</em><em> </em>
Answer:
Dipole-dipole interactions
Step-by-step explanation:
Each molecule consists of <em>two different elements</em>.
Thus, each molecule has permanent <em>bond dipoles</em>.
The dipoles do not cancel, so the attractive forces are dipole-dipole attractions.
"Covalent bonds" is <em>wrong,</em> because there are no bonds between the two molecules.
There are dipole-induced dipole and London dispersion forces, but they are much weaker than the dipole-dipole attractions.
Gravitational<span> Acceleration or W=Mg so... Q1: W(earth)=</span>50, W(X)=500 ---> g(X)=10<span>*g(earth)=10*9.8=98 --> C is correct. Q2: </span>M<span>=W/g --> </span>M=735/9.8=75 ---> B is correct. Q3: W=Mg=50*3.59<span>=179.5 N ---> B is correct</span>
Answer and Explanation:
Calorie is the unit of heat energy . There are 2 units with the same name 'calorie' which is widely used.
'The amount of heat energy required to increase the temperature of 1 gram of water by mass by
or 1 K is known as small calorie or gram calorie'.
Another one is large calorie which can be defined as :
'The amount of heat energy required to make arise in temperature of water 1 kg by mass by
or 1 K is known as large calorie or kilcalorie and is represented as Cal or kcal'.
After the adoption of SI system, thee units of the metric system cal, C or kilocal are considered deprecated or obsolete with the SI unit for heat energy as 'joule or J'
1 cal = 4.184 J
1C or 1 kilocal = 4184 J
Calorimeter constant:
Calorimeter constant, represented as '
' is used to quantify the heat capacity or the amount of heat of a calorimeter.
It can be calculated by ther given formula:

where,
= corresponding temperature change
= enthalpy change
Its unit is J/K or J/1^{\circ}C[/tex] which can be convertyed to cal/1^{\circ}C[/tex] by dividing the calorimeter constant by 4.184 or 4184 accordingly.