Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L
Answer:
The answer is
<h2>720 Joules</h2>
Explanation:
The kinetic energy of a body can be found by using the formula
<h3>

</h3>
where
m is the mass
v is the velocity / speed
From the question
mass = 10 kg
velocity = 12 m/s
Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>720 Joules</h3>
Hope this helps you
Baking powder is used to increase the volume and lighten the texture of baked goods. It works by releasing carbon dioxide gas into a batter or dough through an acid–base reaction, causing bubbles in the wet mixture to expand and thus leavening the mixture.
Answer:
see explaination
Explanation:
Molecular equation;
2Li3PO4(aq) + 3CaCl2(aq) >>>> Ca3(PO4)2(s) + 6LiCl(aq)
Total ionic equation; . Includes all ions ;
6Li^+(aq) + 2PO4^-3(aq) + 3Ca^+2(aq) + 6Cl^-(aq) >>>> Ca3(PO4)2(s) + 6Li^+(aq) + 6Cl^-(aq)
Net ionic equation; remove common ions from total ionic;
2PO4^-3(aq) + 3Ca^+2(aq) >>>> Ca3(PO4)2(s)
Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg