1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
6

HELP FAST!!!What are the solutions to the quadratic equation (x+3)^2=49

Mathematics
1 answer:
Nina [5.8K]3 years ago
7 0
The answer is C .....
You might be interested in
Find the average rate of change of each function over the interval [0, 2]. Match each representation with its respective average
marishachu [46]
Average rate of change over interval [a,b]: r=[f(b)-f(a)]/(b-a)
In this case the interval is [0,2], then a=0, b=2
r=[f(2)-f(0)]/(2-0)
r=[f(2)-f(0)]/2

1) First function: h(x)
r=[h(2)-h(0)]/2
x=2→h(2)=(2)^2+2(2)-6
h(2)=4+4-6
h(2)=2
x=0→h(0)=(0)^2+2(0)-6
h(0)=0+0-6
h(0)=-6
r=[h(2)-h(0)]/2
r=[2-(-6)]/2
r=(2+6)/2
r=(8)/2
r=4

2) Second function: f(x)
A function, f, has an
x-intercept at (2,0)→x=2, f(2)=0
and a y-intercept at (0,-10)→x=0, f(0)=-10
r=[f(2)-f(0)]/2
r=[0-(-10)]/2
r=(0+10)/2
r=(10)/2
r=5

3) Third function: g(x)
r=[g(2)-g(0)]/2
From the graph:
g(2)=6
g(0)=2
r=(6-2)/2
r=(4)/2
r=2

4) Fourth function: j(x)
r=[j(2)-j(0)]/2
From the table:
x=2→j(2)=-8
x=0→j(0)=4
r=(-8-4)/2
r=(-12)/2
r=-6

Answer:
Pairs
1) h(x)     4
2) f(x)      5
3) g(x)     2
4) j(x)     -6
8 0
3 years ago
I don't know what to do I'm very confused ​
finlep [7]

Answer:

x = 33.8°

Step-by-step explanation:

The resulting diagram we have is a right triangle. To find x, apply trigonometric function.

Reference angle = x

Opposite = 116

Adjacent = 173

Apply TOA:

Tan x = Opp/Adj

tan (x) = \frac{116}{173}

x = tan^{-1}(\frac{116}{173})

x = tan^{-1}(\frac{116}{173})

x = 33.8° (nearest tenth)

7 0
3 years ago
25 POINTS!! Please help with answers !
Allisa [31]

Answer:

1.28/7. 2.-17/7. 3.-11/-3. 4.not sure. 5. cant remeber rest

5 0
3 years ago
Find the measure of the angle, round to the nearest tenth: Sin X = .7547
dimulka [17.4K]
SIN(x) = .7547
X = INVERSE-SIN(.7547)
X = 49.0 degrees
4 0
3 years ago
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
Other questions:
  • Find the unit rate for 80 inches over 10 days
    7·2 answers
  • If ABC is reflected across the yaxis, what are the coordinates of A?
    7·1 answer
  • If y varies directly with x and y =70 when x=14, find x when when y = 110
    13·1 answer
  • Find the slope <br> x+3=0
    7·1 answer
  • Ummm... so my math teacher goes... What 2+2 and I ike girl did you just.. you know I cant solve that one... So now I need help.
    7·1 answer
  • Given a circle with a center at (-3.1) and a radius of 4, is the point (1,-2) inside,
    11·1 answer
  • 5x^5 + 20x^3 - 105.x^2<br>factor the following polynomial completely​
    10·1 answer
  • Andy solve an equation as shown below. What error did Andy make?
    6·1 answer
  • I’m not good with these somebody please help me
    14·1 answer
  • Explain what independent and dependent variables mean
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!