The Lock-and-key mechanism was first proposed by Emil Fischer which described as the enzymatic reactions whereby an enzyme with a single substrate binds temporarily to form a substrate complex.
The lock-and-key mechanism is usually associated with the complementary shapes of an enzyme with a single substrate, wherein the lock that is being referred to is the enzyme and the substrate is the key. One right sized substrate (key) fits into the active site (key hole) of the enzyme (lock).
The active site which is mentioned above is structurally complementary to the substrate. This is the temporary binding site on the enzymes. Just like a lock and key, the enzyme as the lock and the substrate as the key is said to fit together.
Human evolution
Human evolution is the lengthy process of change by which people originated from apelike ancestors. Scientific evidence shows that the physical and behavioral traits shared by all people originated from apelike ancestors and evolved over a period of approximately six million years.
One of the earliest defining human traits, bipedalism -- the ability to walk on two legs -- evolved over 4 million years ago. Other important human characteristics -- such as a large and complex brain, the ability to make and use tools, and the capacity for language -- developed more recently. Many advanced traits -- including complex symbolic expression, art, and elaborate cultural diversity -- emerged mainly during the past 100,000 years.
Humans are primates. Physical and genetic similarities show that the modern human species, Homo sapiens, has a very close relationship to another group of primate species, the apes. Humans and the great apes (large apes) of Africa -- chimpanzees (including bonobos, or so-called “pygmy chimpanzees”) and gorillas -- share a common ancestor that lived between 8 and 6 million years ago. Humans first evolved in Africa, and much of human evolution occurred on that continent. The fossils of early humans who lived between 6 and 2 million years ago come entirely from Africa.
Most scientists currently recognize some 15 to 20 different species of early humans. Scientists do not all agree, however, about how these species are related or which ones simply died out. Many early human species -- certainly the majority of them – left no living descendants. Scientists also debate over how to identify and classify particular species of early humans, and about what factors influenced the evolution and extinction of each species.
Early humans first migrated out of Africa into Asia probably between 2 million and 1.8 million years ago. They entered Europe somewhat later, between 1.5 million and 1 million years. Species of modern humans populated many parts of the world much later. For instance, people first came to Australia probably within the past 60,000 years and to the Americas within the past 30,000 years or so. The beginnings of agriculture and the rise of the first civilizations occurred within the past 12,000 years.
Hope this helps:)
Answer:
because they have thicker walls
Explanation:
blood is punped our of the heart very fast which means it would need a blood vessel witch thick walls to withstand the pressure. thin walls would cause the blood vessle damage and may evwn break as it wouldn't be able to withstans the pressure.
Answer: <u>Guanine
</u>
According to Chargaff's rule, the base pairing in the DNA and RNA is fixed. Adenine always pairs with Thymine in DNA and Uracil in RNA. Guanine pairs up with cytosine. This complementary base pairing is universal and constant. That's why amounts are also equal. It means if cytosine is 20% in any DNA sample, then amount of guanine would be 20% as well.