So first write out the expression:

take two 10's from the top to cancel with the two 10's on the bottom.
3.9/1.3 is 3.
The answer is 3*10^3
![\begin{cases} 4x+3y=-8\\\\ -8x-6y=16 \end{cases}~\hspace{10em} \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%204x%2B3y%3D-8%5C%5C%5C%5C%20-8x-6y%3D16%20%5Cend%7Bcases%7D~%5Chspace%7B10em%7D%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![4x+3y=-8\implies 3y=-4x-8\implies y=\cfrac{-4x-8}{3}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3} \\\\[-0.35em] ~\dotfill\\\\ -8x-6y=16\implies -6y=8x+16\implies y=\cfrac{8x+16}{-6} \\\\\\ y=\cfrac{8}{-6}x+\cfrac{16}{-6}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3}](https://tex.z-dn.net/?f=4x%2B3y%3D-8%5Cimplies%203y%3D-4x-8%5Cimplies%20y%3D%5Ccfrac%7B-4x-8%7D%7B3%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-8x-6y%3D16%5Cimplies%20-6y%3D8x%2B16%5Cimplies%20y%3D%5Ccfrac%7B8x%2B16%7D%7B-6%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B8%7D%7B-6%7Dx%2B%5Ccfrac%7B16%7D%7B-6%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D)
one simple way to tell if both equations do ever meet or have a solution is by checking their slope, notice in this case the slopes are the same for both, meaning the lines are parallel lines, however, notice both equations are really the same, namely the 2nd equation is really the 1st one in disguise.
since both equations are equal, their graph will be of one line pancaked on top of the other, and the solutions is where they meet, hell, they meet everywhere since one is on top of the other, so infinitely many solutions.
Ok so the answer is 160/32
Answer:
what do u need help with?
Step-by-step explanation:
All you simply have to do is multiply 20 x 0.35. Multiplying it by 0.35 will turn it into the number that makes up 35%. The answer would be they made 7 shots.