There are six skill-related fitness components: agility, balance, coordination<span>, </span>speed<span>, power, and reaction time. Skilled athletes typically excel in all six areas. Agility is the ability to change and control the direction and position of the body while maintaining a constant, rapid motion.</span>
Answer:
the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 is 31.3 m/s
Explanation:
given information
car's mass, m = 1200 kg
= 100 m
= 
= 150 m
= 0
according to conservative energy
the distance from point A to B, h = 150 m - 100 m = 50 m
the initial speed 
final speed
= 0
thus,
² =
² - 2 g h
0 =
² - 2 g h
² = 2 g h
= √2 g h
= √2 (9.8) (50)
= 31.3 m/s
Answer:

Explanation:
Two identical sticky masses m are moving in the xy-plane, with their momenta at an angle of φ with one another. They are each moving at the same speed v when they collide at the origin of the coordinates and stick together. After the collision, the masses move at an angle −θ2 with respect to the +x axis at speed v2 .1. What was the angle φ?
from the principle of momentum
In a system of colliding bodies,we know that the total momentum before collision will equal to the total momentum after collision.
Take note that momentum is the product of mass and velocity
momentum before collision=momentum after collision
mass, m
u=initial velocity of the identical masses
v2=the common velocity after the collision
Note that the collision is inelastic , since they both moved with the same velocity
umcosφ+umcosφ=(m+m)v2cos−θ2
2mucosφ=2mv2cos−θ2

Polar molecules do have ionic bonds
Answer:
4.03 m/s
Explanation:
Initial momentum = final momentum
(282 kg) (3.50 m/s) + (155 kg) (-1.38 m/s) = (282 kg) (1.10 m/s) + (115 kg) v
v = 4.03 m/s