Amplitude is affected by the energy wave in the instrument. High energy wave means high amplitude and low energy wave means low amplitude.
<u>Explanation:</u>
The amplitude of a periodic variable is a measure of its change over a single period. There are various definitions of amplitude, which are all functions of the magnitude of the differences between the variable's extreme values.
The amount of energy carried by a wave is related to the amplitude of the wave. Amplitude of an instrument is directly affected by the wave of the energy in the instruments. High energy wave means high amplitude and low energy wave means low amplitude in the instrument.
They differ because they are transverse wave. That is their direction of travel is perpendicular to its vibrations.
When the dust is too thick to penetrate with visible light, such as the Nebula, Radio Waves are used to penetrate the dust. Longer radio waves can completely penetrate the thick cloud cover, allowing scientists to beam radar waves.
Answer:
Part a)
distance = 112 miles
Part b)
current position = 112 miles from the position of town
Explanation:
Part a)
Since the distance marker is showing the distance between the town and the position of john at all time
so here we have

Part b)
Current position of John is given as

from the position of the town
The missing diagram is in the attachments.
Answer: X: positive Y: positive
Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.
Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.