Answer:
Explanation:
Moment of inertia of a disc = 1/2 M R²
Since mass is same for both and radius are r and 2r, their moment of inertia can be in the ratio of 1: 4 . Let them be I and 4I . Angular speed are ω₀ and - ω₀ .
We shall apply law of conservation of angular momentum .
initial total angular momentum
I x ω₀ - 4I x ω₀ = - 3Iω₀
Let final common angular momentum be ω
total final angular momentum = ( I + 4I ) ω
Applying law of conservation of angular momentum
( I + 4I ) ω = - 3Iω₀
ω = - 3 / 5 ω₀ .
b )
Initial total rotational K E
= 1/2 I ω₀² + 1/2 4I ω₀²
= 1/2 x5I ω₀²
Final total rotational K E
= 1/2 ( I + 4I ) ( - 3 / 5 ω₀ )²
= 1/2 x 9 / 5 I ω₀²
= 9 / 10I ω₀²
change in rotational kinetic energy = 9 / 10I ω₀² - 1/2 x5I ω₀²
(9/10 - 5/2) xI ω₀²
=( .9 - 2.5 )I ω₀²
= - 1.6 I ω₀² Ans
Answer:
Key Takeaways: Isotopes
Isotopes are samples of an element with different numbers of neutrons in their atoms.
The number of protons for different isotopes of an element does not change.
Not all isotopes are radioactive. Stable isotopes either never decay or else decay very slowly. ...
When an isotope decays, the starting material is the parent isotope.
Explanation:
Answer:
Power generate by generator = 265 W (Approx.)
Explanation:
Given:
Mass of student = 62 kg
Height of stairs = 3.4 meter
Time taken = 7 second
Find:
Power generate by generator
Computation:
Power = Force x [Distance / Time]
Power = [Mass x gravitational acceleration] x [Distance / Time]
Power = [62 x 9.8][3.4/7]
Power = [607.6][3.4/7]
Power = 265.12
Power generate by generator = 265.12
Power generate by generator = 265 W (Approx.)
Answer:
Ventricular systole
Explanation:
This contraction causes an increase in pressure inside the ventricles, being the highest during the entire cardiac cycle. The ejection of blood contained in them takes place. Therefore, blood is prevented from returning to the atria by increasing pressure, which closes the bicuspid and tricuspid valves.