Answer:
D) 5/13
Step-by-step explanation:
Sin x = Opposite / Hypotenuse
Opposite side length = 5 cm
Hypotenuse length = 13 cm
Sin x = 5/13
1st problem:
Use the Pythagorean theorem:
a^2+b^2=c^2
49+361=c^2
c^2=410
c=20.24
The answer is 20m
2nd problem:
First calculate the height using the Pythagorean theorem:
a^2+b^2=c^2
20^2+b^2=625 (i got 20 {radius} by half-ing the base edge length)
400+b^2=625
b^2=225
b=15
Next, solve for the volume:
V=a^2*h/3
V=40^2*15/3
V=1600*5
V=8000
The answer is the second choice or B.
Answer:
The population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Step-by-step explanation:
- 6% of the city's population moves to the suburbs (and 94% stays in the city).
- 2% of the suburban population moves to the city (and 98% remains in the suburbs).
The migration matrix is given as:
![A= \left \begin{array}{cc} \\ C \\S \end{array} \right\left[ \begin{array}{cc} C&S\\ 0.94&0.06 \\0.02&0.98 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%20%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20%5C%5C%20C%20%5C%5CS%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D)
The population in the year 2000 (initial state) is given as:
![\left[ \begin{array}{cc} C&S\\ 500,000&700,000 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%20500%2C000%26700%2C000%20%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city and the suburb in 2002 (two years after) is:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right\left[ \begin{array}{cc} 0.94&0.06 \\0.02&0.98 \end{array} \right]^2](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D%5E2)
![A^{2} = \left[ \begin{array}{cc} 0.8848 & 0.1152 \\\\ 0.0384 & 0.9616 \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B2%7D%20%3D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right \left[ \begin{array}{cc} 0.8848 & 0.1152 \\ 0.0384 & 0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 500,000*0.8848+700,000*0.0384& 500,000*0.1152 +700,000*0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 469280& 730720 \end{array} \right]](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20500%2C000%2A0.8848%2B700%2C000%2A0.0384%26%20500%2C000%2A0.1152%20%2B700%2C000%2A0.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20469280%26%20730720%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Answer:
y = 3.5x - 12.5
Step-by-step explanation:
First, find the slope using rise over run (y2 - y1 / x2 - x1) with the 2 points:
(-2 - 5) / (3 - 5)
-7/-2
= 3.5
Then, plug the slope and a point into y = mx + b to solve for b:
y = mx + b
5 = 3.5(5) + b
5 = 17.5 + b
-12.5 = b
Plug the slope and the y intercept into the equation y = mx + b
y = 3.5x - 12.5 will be the equation